2,370 research outputs found

    Quasi-generalized variables

    Get PDF
    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics

    Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km

    Get PDF
    A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E). The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS) at the iodine line 1109 (~532.260 nm). DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009

    Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Get PDF
    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh–Mie–Raman (RMR) lidar at KĂĽhlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4–8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave–wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models

    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution

    Get PDF
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s)

    Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N)

    Get PDF
    Rayleigh lidar temperature profiles have been derived in the polar middle atmosphere from 834 measurements with the ALOMAR Rayleigh/Mie/Raman lidar (69.3° N, 16.0° E) in the years 1997–2005. Since our instrument is able to operate under full daylight conditions, the unique data set presented here extends over the entire year and covers the altitude region 30 km–85 km in winter and 30 km–65 km in summer. Comparisons of our lidar data set to reference atmospheres and ECMWF analyses show agreement within a few Kelvin in summer but in winter higher temperatures below 55 km and lower temperatures above by as much as 25 K, due likely to superior resolution of stratospheric warming and associated mesospheric cooling events. We also present a temperature climatology for the entire lower and middle atmosphere at 69° N obtained from a combination of lidar measurements, falling sphere measurements and ECMWF analyses. Day to day temperature variability in the lidar data is found to be largest in winter and smallest in summer

    Offshoring, tasks, and the skill-wage pattern

    Full text link
    The paper investigates the relationship between offshoring, wages, and the ease with which individuals' tasks can be offshored. Our analysis relates to recent theoretical contributions arguing that there is only a loose relationship between the suitability of a task for offshoring and the associated skill level. Accordingly, wage effects of offshoring can be very heterogeneous within skill groups. We test this hypothesis by combining micro-level information on wages and demographic and workplace characteristics as well as occupational infor- mation relating to the degree of offshorability with industry-level data on offshoring. Our main results suggest that in partial equilibrium, wage effects of offshoring are fairly modest but far from homogeneous and depend significantly on the extent to which the respective task requires personal interaction or can be described as non-routine. When allowing for cross-industry movement of workers, i.e., looking at a situation closer to general equilibrium, the magnitude of the wage effects of offshoring becomes substantial. Low- and medium-skilled workers experience significant wage cuts due to offshoring which, however, again strongly depend on the degree of personal interaction and non-routine content
    • …
    corecore