1,623 research outputs found

    Fluid flow restrictor Patent

    Get PDF
    Tubular flow restrictor for gas flow control in pipelin

    Gas-flow restrictor

    Get PDF
    Gas flow restrictor is described, consisting of predetermined length and size of capillary tubing to control flow rate of carrier gas into gas chromatograph of flow rate of sample gas into mass spectrometer inlet system. Length and inner diameter of capillary tubing was estimated with mathematical expressions for viscous flow

    Relationships between charge density response functions, exchange holes and localized orbitals

    Full text link
    The charge density response function and the exchange hole are closely related to each other via the fundamental fluctuation-dissipation theorem of physics. A simple approximate model of the static response function is visually compared on several examples in order to demonstrate this relationship. This study is completed by illustrating the well-known isomorphism between the exchange hole and the square of the dominant localized orbital lying in the space region of the reference point of the exchange hole function. The implications of these relationships for the interpretation of common chemical concepts, such as delocalization, are discussed.Comment: 10 two-columns pages, including 3 figure

    Characterization and Inference of Graph Diffusion Processes from Observations of Stationary Signals

    Full text link
    Many tools from the field of graph signal processing exploit knowledge of the underlying graph's structure (e.g., as encoded in the Laplacian matrix) to process signals on the graph. Therefore, in the case when no graph is available, graph signal processing tools cannot be used anymore. Researchers have proposed approaches to infer a graph topology from observations of signals on its nodes. Since the problem is ill-posed, these approaches make assumptions, such as smoothness of the signals on the graph, or sparsity priors. In this paper, we propose a characterization of the space of valid graphs, in the sense that they can explain stationary signals. To simplify the exposition in this paper, we focus here on the case where signals were i.i.d. at some point back in time and were observed after diffusion on a graph. We show that the set of graphs verifying this assumption has a strong connection with the eigenvectors of the covariance matrix, and forms a convex set. Along with a theoretical study in which these eigenvectors are assumed to be known, we consider the practical case when the observations are noisy, and experimentally observe how fast the set of valid graphs converges to the set obtained when the exact eigenvectors are known, as the number of observations grows. To illustrate how this characterization can be used for graph recovery, we present two methods for selecting a particular point in this set under chosen criteria, namely graph simplicity and sparsity. Additionally, we introduce a measure to evaluate how much a graph is adapted to signals under a stationarity assumption. Finally, we evaluate how state-of-the-art methods relate to this framework through experiments on a dataset of temperatures.Comment: Submitted to IEEE Transactions on Signal and Information Processing over Network

    Photoheliograph film camera design

    Get PDF
    Photoheliograph film camera design for use with Apollo telescope moun
    • 

    corecore