12 research outputs found
Matrix-Bound PAI-1 Supports Cell Blebbing via RhoA/ROCK1 Signaling
The microenvironment of a tumor can influence both the morphology and the behavior of cancer cells which, in turn, can rapidly adapt to environmental changes. Increasing evidence points to the involvement of amoeboid cell migration and thus of cell blebbing in the metastatic process; however, the cues that promote amoeboid cell behavior in physiological and pathological conditions have not yet been clearly identified. Plasminogen Activator Inhibitor type-1 (PAI-1) is found in high amount in the microenvironment of aggressive tumors and is considered as an independent marker of bad prognosis. Here we show by immunoblotting, activity assay and immunofluorescence that, in SW620 human colorectal cancer cells, matrix-associated PAI-1 plays a role in the cell behavior needed for amoeboid migration by maintaining cell blebbing, localizing PDK1 and ROCK1 at the cell membrane and maintaining the RhoA/ROCK1/MLC-P pathway activation. The results obtained by modeling PAI-1 deposition around tumors indicate that matrix-bound PAI-1 is heterogeneously distributed at the tumor periphery and that, at certain spots, the elevated concentrations of matrix-bound PAI-1 needed for cancer cells to undergo the mesenchymal-amoeboid transition can be observed. Matrix-bound PAI-1, as a matricellular protein, could thus represent one of the physiopathological requirements to support metastatic formation
PAI-1 and functional blockade of SNAI1 in breast cancer cell migration
12 pages, 5 figures.-- PMID: 19055748 [PubMed].-- et al.[Introduction]: Snail, a family of transcriptional repressors implicated in cell movement, has been correlated with tumour invasion. The Plasminogen Activation (PA) system, including urokinase plasminogen activator (uPA), its receptor and its inhibitor, plasminogen activator inhibitor type 1(PAI-1), also plays a key role in cancer invasion and metastasis, either through proteolytic degradation or by non-proteolytic modulation of cell
adhesion and migration. Thus, Snail and the PA system are both over-expressed in cancer and influence this process. In this study we aimed to determine if the activity of SNAI1 (a member of the Snail family) is correlated with expression of the PA system components and how this correlation can influence tumoural cell migration.[Methods]: We compared the invasive breast cancer cell-line MDA-MB-231 expressing SNAI1 (MDA-mock) with its derived clone expressing a dominant-negative form of SNAI1 (SNAI1-DN). Expression of PA system mRNAs was analysed by cDNA microarrays and real-time quantitative RT-PCR. Wound healing assays were used to determine cell migration. PAI-1 distribution was assessed by immunostaining.[Results]: We demonstrated by both cDNA microarrays and realtime quantitative RT-PCR that the functional blockade of SNAI1
induces a significant decrease of PAI-1 and uPA transcripts. After performing an in vitro wound-healing assay, we observed
that SNAI1-DN cells migrate more slowly than MDA-mock cells and in a more collective manner. The blockade of SNAI1 activity resulted in the redistribution of PAI-1 in SNAI1-DN cells decorating large lamellipodia, which are commonly found
structures in these cells.[Conclusions]: In the absence of functional SNAI1, the expression of PAI-1 transcripts is decreased, although the protein is redistributed at the leading edge of migrating cells in a manner comparable with that seen in normal epithelial cells.This work was supported by the CNRS ACI Program "Complexité du vivant" (grant # 050009DR11) and by the Evry Genopole grant "Aide à l'acquisition d'équipement semi-lourd" 2007 and 2008.Peer reviewe
RELATIONS ENTRE LES ACTIVATEURS DU PLASMINOGENE ET LES CAPACITES REGENERATIVES DU MUSCLE SQUELETTIQUE DU RAT
International audienc
Inhibition of PAI-1 expression in breast cancer carcinoma cells by siRNA at nanomolar range.
Plasminogen activator inhibitor type I (PAI-1) plays a central role in metastatic behavior by increasing cells' migratory capacities as shown in several tumoral cell lines. Moreover, in vivo high expression of this factor helps tumoral growth, both by its role in extracellular matrix remodeling and by favoring angiogenesis. High levels of PAI-1 are correlated with bad prognosis in several cancers, particularly in breast cancer. The effect of PAI-1 upon angiogenesis is also involved in atherosclerosis, in which high levels of PAI-1 expression are observed. Breast carcinoma MDA MB 231 cells are known for both having important metastatic capacities and expressing high levels of PAI-1. We have demonstrated in these cells that the transfection of PAI-1 specific small interfering RNAs (siRNA) specifically inhibited the expression of this factor by 91%. We evaluated siRNA activity by determining PAI-1 mRNA level, as well as intracellular and extracellular PAI-1 protein by using RT Q-PCR, Western blot and ELISA analyses, respectively. Data confirmed inhibition at mRNA levels (primary aim of interference), intracellular protein, and secreted PAI-1, the latter being operative successfully in the cell microenvironment. The lipidic vector Delivery Liposomes System (DLS) used was adapted to siRNA delivery as observed by particle size distribution analysis, confocal microscopy and transfection into MDA MB 231, in the presence of serum. SiRNA activity was clearly detected at concentrations as low as 10 nM. Moreover, the low cytotoxicity of this vector makes it a good candidate for future in vivo siRNA delivery
PRO OR CONS LOCAL VS. GLOBAL IMAGERY INFORMATION FOR IDENTIFYING CELL MIGRATORY POTENTIAL
Cell migration is a complex process involving adhesion, anchorage and de-adhesion. It is also a reliable indicator of the outcome of cancer. Can a migratory cell behavior be reliably associated to a cell morphology? In the favourable case, it could become a visual indicator when coupled with image analyzis. In this work, microscopy images is much use to characterize the morphology of cells placed in various environments. Features were processed and cells were classified taking into account the biological expertise. Linking these results to experimental parameters and in vitro data, we proposed to evaluate the cell migratory potential. The results give the expert new insights into the most useful features and show the feasability of an automated inspection system. A less common aspect is discussed throughout the paper regarding the relevance of the local (cell image) or global (whole image) information processing. 1