62,075 research outputs found
A Color-Magnitude Diagram for a Globular Cluster In the Giant Elliptical Galaxy NGC 5128
The Hubble Space Telescope has been used to obtain WFPC2 (V,I) photometry for
a large sample of stars in the outer halo of the giant elliptical NGC 5128 (d =
4 Mpc). The globular cluster N5128-C44, at the center of the Planetary Camera
field, is well enough resolved to permit the construction of a color-magnitude
diagram (CMD) for it which covers the brightest two magnitudes of the giant
branch. The CMD is consistent with that of a normal old, moderately
low-metallicity ([Fe/H] = -1.30 globular cluster, distinctly more metal-poor
than most of the field halo stars at the same projected location (which average
[Fe/H] ~ -0.5). This is the most distant globular cluster in which direct
color-magnitude photometry has been achieved to date, and the first one
belonging to a giant E galaxy.Comment: 12 pages, LaTeX, including 5 postscript figures; submitted to
Astronomical Journa
Superrotation planetary atmospheres: Mechanical analogy, angular momentum budget and simulation of the spin up process
Superrotation rates observed in planetary atmospheres are analyzed based on the concept of a thermally driven zonally symmetric circulation. Specifically, how this superrotation is produced and maintained against the tendency for friction to oppose differential motions between the atmosphere and the underlying planet is addressed. The time evolution of a fluid leading from corotation under uniform heating to superrotation under globally nonuniform heating is simulated using a three dimensional zonally symmetric spectral model and Laplace transformation. The increased tendency toward geostrophy combined with the increase of surface pressure toward the poles (due to meridional mass transport), induces the atmosphere to subrotate temporarily at lower altitudes. The resulting viscous shear near the surface thus permits angular momentum to flow from the planet into the atmosphere where it propagates upwards and, combined with the change in moment of inertia, produces large superrotation rates at higher viscosities
MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy
Intense and complex instrumental backgrounds, against which the much smaller
signals from celestial sources have to be discerned, are a notorious problem
for low and intermediate energy gamma-ray astronomy (~50 keV - 10 MeV).
Therefore a detailed qualitative and quantitative understanding of instrumental
line and continuum backgrounds is crucial for most stages of gamma-ray
astronomy missions, ranging from the design and development of new
instrumentation through performance prediction to data reduction. We have
developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the
widely used GEANT (Version 3.21) package, to simulate ab initio the physical
processes relevant for the production of instrumental backgrounds. These
include the build-up and delayed decay of radioactive isotopes as well as the
prompt de-excitation of excited nuclei, both of which give rise to a plethora
of instrumental gamma-ray background lines in addition to continuum
backgrounds. The MGGPOD package and documentation are publicly available for
download from http://sigma-2.cesr.fr/spi/MGGPOD/.
We demonstrate the capabilities of the MGGPOD suite by modeling high
resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer
(TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in
the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra
reveal the complex instrumental background in formidable detail, particularly
the many prompt and delayed gamma-ray lines. We evaluate the successes and
failures of the MGGPOD package in reproducing TGRS data, and provide
identifications for the numerous instrumental lines.Comment: 60 pages, 13 figures, 7 tables, accepted for publication in ApJ
Enhancement of Kerr nonlinearity via multi-photon coherence
We propose a new method of resonant enhancement of optical Kerr nonlinearity
using multi-level atomic coherence. The enhancement is accompanied by
suppression of the other linear and nonlinear susceptibility terms of the
medium. We show that the effect results in a modification of the nonlinear
Faraday rotation of light propagating in an Rb87 vapor cell by changing the
ellipticity of the light.Comment: 4 pages, 3 figures Submitted to Optics Letter
Rule Managed Reporting in Energy Controlled Wireless Sensor Networks
This paper proposes a technique to extend the network lifetime of a wireless sensor network, whereby each sensor node decides its network involvement, based on energy resources and the information in each message (ascertained through a system of rules). Results obtained from the simulation of an industrial monitoring scenario have shown that a considerable increase in the lifetime and connectivity can be obtained
Dynamic method to distinguish between left- and right-handed chiral molecules
We study quantum systems with broken symmetry that can be modelled as cyclic
three-level atoms with coexisting one- and two-photon transitions. They can be
selectively optically excited to any state. As an example, we show that left-
and right-handed chiral molecules starting in the same initial states can
evolve into different final states by a purely dynamic transfer process. That
means, left- and right-handed molecules can be distinguished purely
dynamically.Comment: 4 pages, submitted to Phys. Rev.
- …