728 research outputs found

    A perturbative approach to J mixing in f-electron systems: Application to actinide dioxides

    Full text link
    We present a perturbative model for crystal-field calculations, which keeps into account the possible mixing of states labelled by different quantum number J. Analytical J-mixing results are obtained for a Hamiltonian of cubic symmetry and used to interpret published experimental data for actinide dioxides. A unified picture for all the considered compounds is proposed by taking into account the scaling properties of the crystal-field potential.Comment: 16 pages + 4 figures; will appear http://prb.aps.or

    Many-body models for molecular nanomagnets

    Get PDF
    We present a flexible and effective ab-initio scheme to build many-body models for molecular nanomagnets, and to calculate magnetic exchange couplings and zero-field splittings. It is based on using localized Foster-Boys orbitals as one-electron basis. We apply this scheme to three paradigmatic systems, the antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In all cases we identify the essential magnetic interactions and find excellent agreement with experiments.Comment: 5 pages, 3 figure

    Quantum-gate implementation in permanently coupled AF spin rings without need of local fields

    Full text link
    We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single- and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.Comment: To appear in Physical Review Letter

    S-mixing and quantum tunneling of the magnetization in molecular nanomagnets

    Full text link
    The role of SS-mixing in the quantum tunneling of the magnetization in nanomagnets has been investigated. We show that the effect on the tunneling frequency is huge and that the discrepancy (more than 3 orders of magnitude in the tunneling frequency) between spectroscopic and relaxation measurements in Fe8_8 can be resolved if SS-mixing is taken into account.Comment: REVTEX, 10 pages, 3 jpg figures, to appear in PR

    Enhancement of rare-earth--transition-metal exchange interaction in Pr2_{2}Fe17_{17} probed by inelastic neutron scattering

    Full text link
    The fundamental magnetic interactions of Pr2_{2}Fe17_{17} are studied by inelastic neutron scattering and anisotropy field measurements. Data analysis confirms the presence of three magnetically inequivalent sites, and reveals an exceptionally large value of the exchange field. The unexpected importance of JJ-mixing effects in the description of the ground-state properties of Pr2_{2}Fe17_{17} is evidenced, and possible applications of related compounds are envisaged.Comment: 4 RevTeX pages, 4 EPS figures. Accepted for publication by Appl. Phys. Lett. (will be found at http://apl.aip.org

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM

    Magnetic Susceptibility of Multiorbital Systems

    Full text link
    Effects of orbital degeneracy on magnetic susceptibility in paramagnetic phases are investigated within a mean-field theory. Under certain crystalline electric fields, the magnetic moment consists of two independent moments, e.g., spin and orbital moments. In such a case, the magnetic susceptibility is given by the sum of two different Curie-Weiss relations, leading to deviation from the Curie-Weiss law. Such behavior may be observed in d- and f-electron systems with t_{2g} and Gamma_8 ground states, respectively. As a potential application of our theory, we attempt to explain the difference in the temperature dependence of magnetic susceptibilities of UO_2 and NpO_2.Comment: 4 pages, 3 figure

    The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?

    Full text link
    We study the phase diagram of the Ising-Kondo lattice with transverse magnetic field as a possible model for the weak-moment heavy-fermion compound URu2Si2, in terms of two low-lying f singlets in which the uranium moment is coupled by on-site exchange to the conduction electron spins. In the mean-field approximation for an extended range of parameters, we show that the conduction electron magnetization responds logarithmically to f-moment formation, that the ordered moment in the antiferromagnetic state is anomalously small, and that the Neel temperature is of the order observed. The model gives a qualitatively correct temperature-dependence, but not magnitude, of the specific heat. The majority of the specific heat jump at the Neel temperature arises from the formation of a spin gap in the conduction electron spectrum. We also discuss the single-impurity version of the model and speculate on ways to increase the specific heat coefficient. In the limits of small bandwidth and of small Ising-Kondo coupling, we find that the model corresponds to anisotropic Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS), Received by Phys. Rev. B 19 April 199

    Molecular engineering of antiferromagnetic rings for quantum computation

    Get PDF
    The substitution of one metal ion in a Cr-based molecular ring with dominant antiferromagnetic couplings allows to engineer its level structure and ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means of low-temperature specific-heat and torque-magnetometry measurements, thus determining the microscopic parameters of the corresponding spin Hamiltonian. The energy spectrum and the suppression of the leakage-inducing S-mixing render the Cr7Ni molecule a suitable candidate for the qubit implementation, as further substantiated by our quantum-gate simulations.Comment: To appear in Physical Review Letter
    • …
    corecore