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Many-body models for molecular nanomagnets
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We present a flexible and effective ab-initio scheme to build many-body models for molecular
nanomagnets, and to calculate magnetic exchange couplings and zero-field splittings. It is based on
using localized Foster-Boys orbitals as one-electron basis. We apply this scheme to three paradig-
matic systems, the antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In all
cases we identify the essential magnetic interactions and find excellent agreement with experiments.
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Clusters made of a finite number of interacting spins
are ideal test beds to investigate fundamental issues in
quantum mechanics. One of the first physical realizations
are molecular nanomagnets (MNMs), molecules contain-
ing a core of d or f ions, whose spins are coupled by
magnetic interactions; MNMs form crystals which behave
like an ensemble of identical and almost non-interacting
magnetic units. During the last years sophisticated ex-
periments and targeted research activities have unveiled
a variety of fundamental quantum phenomena and poten-
tial technological applications of MNMs [1–7]. The two
most promising classes have been identified in the Single-
Molecule Magnets (SMM), like Mn12 [1], Fe8[1] and Fe4
[1, 8, 9], and the Antiferromagnetic Rings (AFR), like
Cr8 [10, 11], shown in Fig. 1, Cr7Ni [6, 12, 13] and Fe6
[1]. While SMM have opened the perspective of storing
information in single molecules and building high-density
magnetic memories, AFR are of great interest in the field
of quantum information processing [6, 7, 13–15].

At the synthetic level, thanks to the huge progresses
made in the last years in coordination chemistry, it is now
possible to reach a high degree of control on the molecular
structure and on the topology of magnetic interactions.
At the theoretical level, one of the main obstacles to fur-
ther progress remains the lack of a flexible and systematic
approach to build ab-initio system-specific models for the
magnetic interactions; such models should describe on
the same footing chemistry and many-body effects within
the partially filled d or f shells of the magnetic ions.

MNMs are typically described through Heisenberg-like
spin Hamiltonians. If the form of the spin Hamilto-
nian is known, the magnetic couplings can be in princi-
ple extracted from total-energy density-functional theory
(DFT) calculations for different spin configurations [16–
19]. This approach can become unpractical if many pa-
rameters have to be determined, as e.g. in heterometallic
compounds or anisotropic SMM; furthermore, subtle in-
teractions, which could greatly influence, e.g., the relax-
ation dynamics, can be easily overlooked. An alternative
consists in computing the couplings via energy variations
at small spin rotations [20]. However, at a more funda-

FIG. 1: The Cr8 antiferromagnetic ring and its Cr d crystal-
field orbitals for site 1, in order a) → e) of increasing energy.
Red (blue) orbital lobes are positive (negative). The covalent
p tails on the neighboring ligands carry the information on
the molecular structure and are crucial for the magnetic ex-
change couplings. We define z as the axis perpendicular to the
ring and pointing outwards. All Cr sites are approximatively
equivalent. H atoms are not shown for clarity.

mental level, a common problem of all these approaches
is that the most used DFT functionals (the local-density
approximation (LDA) and its simple extensions), do not
properly describe strong correlation effects in open d-
or f -shells, while LDA+U or hybrid functionals include
them only at the static mean-field level. Recently, it has
been suggested that Hubbard-like models could be more
appropriate [21, 22], but an efficient and flexible scheme
to calculate the parameters of such models ab-initio, no
matter the complexity of the system, has not been im-
plemented so far.

In this Letter we show that this can be achieved by
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FIG. 2: Structure of Fe4 and Fe d crystal-field orbitals local-
ized on the central Fe (D3 symmetry): The a1 singlet (a), and
the two e doublets (b, c) and (d, e), in order of increasing en-
ergy. Heisenberg couplings: Γ1,2 (full line) and Γ2,3 (dashed
line). We define z as the axis perpendicular to the triangle,
and pointing outwards. H atoms are not shown for clarity.

using localized Foster-Boys orbitals [23] as one-electron
basis to construct molecule-specific generalized Hubbard
models. We use the constrained local-density approx-
imation (cLDA) scheme [24] to calculate the screened
Coulomb interactions in such a Foster-Boys basis. We
obtain the spin Hamiltonians systematically by using a
canonical transformation [25] to eliminate charge fluctua-
tions, without any a-priori assumption on the form of the
final spin Hamiltonian. We implement this scheme in the
NWChem quantum-chemistry code [26], and apply it to
three prototype molecules, representative of the two main
classes of MNMs: the AFRs Cr8 (Fig. 1) and Cr7Ni and
the SMM Fe4 (Fig. 2). These systems have been exten-
sively investigated experimentally [8–10, 12, 27] and the
magnetic exchange couplings are now well known. In all
cases, we find excellent agreement with experiments, and
identify the microscopic mechanisms that lead to the em-
pirical spin models commonly adopted to describe them.

The procedure we adopt is the following. First we per-
form LDA calculations for the experimental structures
reported in Refs. [28]; in this step we use as basis a
triple-zeta valence set of gaussians. Next, we identify the
transition-metal d-like molecular orbitals; by means of
Foster-Boys localization [23], we construct a set of local-
ized orbitals, which are centered on the transition-metal
ions and span such d-like states; using these orbitals as
basis we build the corresponding generalized Hubbard

model

H = −
∑

ii′σ

∑

mm′

ti,i
′

m,m′c
†
imσc

†
i′m′σ

+
1

2

∑

ii′σσ′

∑

mm′

∑

pp′

U i,i′

mpm′p′c
†
imσc

†
ipσ′ci′p′σ′ci′m′σ

+
∑

i

λi Si · Li −HDC. (1)

Here c†imσ (cimσ) creates (annihilates) an electron with
spin σ in the Boys orbital m at site i. The parameters

ti,i
′

m,m′ are the hopping integrals (i 6= i′) or the crystal-

field matrix (i = i′), while U i,i′

mpm′p′ are the screened
Coulomb integrals (Tab. I). The term HDC is the dou-
ble counting correction, which removes the part of the
Coulomb interaction already included and well accounted
for in the LDA; λi is the spin-orbit coupling. The re-
sults presented in this work are obtained using the ro-
tational invariant form of the Coulomb vertex, includ-
ing spin-flip and pair hopping terms but (for simplicity)
no Coulomb anisotropy; thus all Coulomb parameters
can be expressed as a function of the averaged screened
Coulomb couplings U i,i and J i,i [29]. We determine the
latter by using the cLDA [24] approach in the Foster-Boys
basis, keeping the basis frozen in the self-consistency
loop. For HDC we adopt the common [30] expression
HDC = 1

2

∑
i U

i,ini
d(n

i
d−1)− 1

4

∑
i J

i,ini
d(

1
2
ni
d−1), where

ni
d is the number of d electrons at site i. For homonu-

clear systems HDC amounts to a shift of the d levels

Cr8

εn ti,i+1

n,n′

|n〉
|n′〉❝
❝
❝|n〉

|1〉 |2〉 |3〉 |4〉 |5〉

|1〉 -0.071 |1〉 -0.231 0.041 -0.001 0.056 0.028

|2〉 -0.061 |2〉 -0.057 0.085 -0.061 -0.019 0.010

|3〉 0.040 |3〉 0.011 0.021 0.033 -0.154 -0.160

|4〉 2.021 |4〉 -0.092 -0.128 -0.171 0.094 0.164

|5〉 2.070 |5〉 0.001 -0.053 -0.011 0.114 -0.033

Cr8 Fe4 Cr7Ni

U1,1 5.98 5.22 6.32 (Ni)

U2,2 5.98 5.03 5.98 (Cr)

J1,1 0.26 0.24 0.21 (Ni)

J2,2 0.26 0.22 0.26 (Cr)

λ1 16.5 34.3 33.5 (Ni)

λ2 16.5 37.0 16.5 (Cr)

TABLE I: Top: Crystal-field energy levels and hopping inte-
grals for Cr8. The latter are given in the basis of crystal-field
orbitals (in eV), and for sites i = 1 and i′ = 2 in Fig. 1. The
energy of the Fermi level is set to zero. Bottom: Screened
Coulomb integrals U i,i and J i,i obtained via cLDA. Sites i
are defined in Fig. 1 and Fig. 2.
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FIG. 3: Cr8: Calculated super-exchange coupling (in meV)
between nearest neighbors [31], Γi,i+1

SE
, as a function of the

Coulomb parameters J and U . Calculations are performed
using the rotationally-invariant Coulomb interaction. The
cLDA values of the screened Coulomb integrals are U ∼ 6 eV
and J ∼ 0.26 eV. Around these values Γi,i+1

SE
> 0 (AFM).

and can be incorporated in the chemical potential; in
the case of Cr7Ni, instead, the shift due to HDC has to
be taken into account explicitly. Finally, we extract the
spin-orbit coupling λi by comparing the one-electron part
of Hamiltonian (1) obtained with and without spin-orbit
interaction. Once we have obtained the parameters of
the Hubbard model (Tab. I), by using a canonical trans-
formation, we eliminate charge fluctuations and derive
the corresponding low-energy spin model. In this step, it
is convenient to work in the basis of crystal-field states,

obtained by diagonalizing the on-site matrix ti,i
′

m,m′ ; we
denote their energies εn with εn ≤ εn+1. The crystal-
field states are shown in Fig. 1 for Cr8 and Fig. 2 for Fe4.
At all sites but the central Fe in Fe4, the environment
of the magnetic ion is approximatively octahedral; thus
the crystal-field orbitals split into a lower energy t2g-like
quasi-triplet and a 1 − 2 eV higher energy eg-like quasi-
doublet. The central Fe site of Fe4 has D3 symmetry;
its crystal-field levels (Fig. 2) split into a a1 ground state
and two excited e doublets, ∼ 0.6 eV and ∼ 1.7 eV above.

For all systems analyzed, we find that the essential spin
interactions are described by the spin Hamiltonian

H=
1

2

∑

ii′

Γi,i′
Si · Si′+

∑

i

Di

[
S2
iz −

1

3
Si(Si + 1)

]
, (2)

where Γi,i′ are the isotropic magnetic couplings and Di a
zero-field splitting parameters (ZFS), which is negative if
z is an easy axis; the z direction is defined as the axis per-
pendicular to the ring (Fig. 1) or to the triangle (Fig. 2).

The coupling Γi,i′ = Γi,i′

CE+Γi,i′

SE is the sum of a ferromag-

netic (FM) screened Coulomb exchange term, Γi,i′

CE, which

we obtain via cLDA calculations, and a super-exchange

term Γi,i′

SE , which can be FM or antiferromagnetic (AFM).

In Fig. 3 we show the calculated Γi,i′

SE for Cr8 (3d3,
S = 3/2) as a function of U = U i,i and J = J i,i. The
figure can be understood from the analytical expression

of Γi,i′

SE in the limit in which only density-density Coulomb
interactions and leading order terms are retained,

Γi,i′

SE ∼
2

9

3∑

n′=1

5∑

n=4

|ti,i
′

n′,n|
2 + |ti,i

′

n,n′ |2

U + εn − ε′n

+
2

9

3∑

n′=1

3∑

n=1

|ti,i
′

n′,n|
2

U + 2J + εn − εn′

−
2

9

3∑

n′=1

5∑

n=4

|ti,i
′

n′,n|
2 + |ti,i

′

n,n′ |2

U − 3J + εn − εn′

.

(3)

Eq. (3) shows the competition between the first two
terms, which yield a positive, i.e., AFM contribution and
the FM third term, arising from excitations to empty

states. For realistic parameters, Γi,i′

SE is small and AFM.
The ZFS term Di in (2) originates from the combined

action of crystal-field and spin-orbit interactions. In the
case of Cr8 it is given by

Di =
1

2

∑

m

〈
3
2
,± 3

2
|ĤSO|m

〉〈
m|ĤSO|

3
2
,± 3

2

〉

E 3
2
− Em

(4)

−
1

2

∑

m

〈
3
2
,± 1

2
|ĤSO|m

〉〈
m|ĤSO|

3
2
,± 1

2

〉

E 3
2
− Em

.

Here |S,M〉 are many-electron states in the S = 3/2
ground multiplet with energy E 3

2
, while |m〉 are all the

excited multiplets connected to |S,M〉 by the spin-orbit
interaction, and have energy Em. Our calculations yield
the full ZFS tensor, and thus we can identify the easy
magnetization axis, which in general is site-dependent.
Remarkably, we find that the molecular global z axis (see
above) is a nearly-easy axis for all sites.
In the next paragraphs we discuss the results of our

calculations (Tab. II), in comparison with experiments.
Let us start from the AFR Cr8. Fig. 3 shows that, for
realistic U and J values, the super-exchange coupling
Γi,i+1
SE is AFM and of the order of few meV. By using the

value of U and J obtained in cLDA (Tab. II) we obtain
Γi,i+1
SE = 1.99 meV. We find that the ferromagnetic direct

Coulomb exchange is Γi,i+1
CE = −0.34 meV. Hence, the to-

tal Heisenberg exchange constant is Γi,i+1 = 1.65 meV,
AFM and in excellent agreement with experiments [10].
In addition, we find that the next-nearest neighbors ex-
change interaction is tiny ( Γi,i+2 ≈ 10−2 Γi,i+1 ); this
explains why all experimental data can be interpreted on
the basis of a nearest-neighbor spin Hamiltonian. Be-
side the dominant isotropic exchange coupling, we also
find a sizable single-ion ZFS term. Our calculations
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Cr8 Fe4 Cr7Ni

Γ1,2

SE
1.99 3.25 2.10

Γ2,3

SE
1.99 0.15 1.99

Th Exp [10] Th Exp[8] Th Exp[12]

Γ1,2 1.65 1.46 2.45 2.05 1.75 1.70

Γ2,3 1.65 1.46 -0.08 -0.09 1.65 1.46

D1 -0.06 -0.03 -0.03 -0.48 -0.35

D2 -0.06 -0.03 -0.06 -0.06 -0.03

TABLE II: Top: Calculated super-exchange exchange cou-
plings. Bottom: Calculated total magnetic couplings [31]
and zero-field splitting (Th) versus experiments (Exp). Sites
i = 1, 2, 3 are defined in Fig. 1 and Fig. 2. In Cr7Ni the Ni
ion is on site 1 of Fig. 1.

yield a significant easy-axis anisotropy in the z direction
(Di < 0); non-axial terms are an order of magnitude
smaller than Di, in line with experiments. The calcu-
lated Di is twice the value extracted from inelastic neu-
tron scattering data, a remarkably good agreement given
the small value of Di.
Next we consider the SMM Fe4 (Fig. 2). This molecule

has D3 symmetry; three Fe3+ ions (3d5, S = 5/2) are lo-
cated at the vertices of an equilateral triangle, and the
fourth is at its center [9]. We find an AFM isotropic
magnetic coupling between the central and external ions
(Γ1,2) and a small FM interaction between the external
ions (Γ2,3), in excellent agreement with the values de-
termined from experiments [8]. We find that the super-
exchange term is small for the external ions, and thus
the FM Coulomb exchange dominates. Finally, we cal-
culate the ZFS tensor and find again a nearly easy-axis
anisotropy along z. Our findings for Di differ of less than
a factor 1.5 from the experimental results [32].
As last case we consider Cr7Ni, an heteronuclear AFR

that can be obtained from Cr8 by replacing a Cr3+ ion
with a Ni2+ (3d8, S = 1). This system is theoretically
the most challenging, because two different types of ion
(Cri3+ and Ni3+) are present. Again, we reproduce well
all experimental results. We find that the total Cr-Ni
isotropic coupling is AFM, Γ1,2 = 1.75 meV, while the
Cr-Cr coupling Γ2,2 is slightly smaller and close to the
value obtained for Cr8. The ZFS parameters obtained
for Ni2+ ion [33] are again negative in sign (easy-axis
anisotropy) and much larger than those of Cr3+, in agree-
ment with neutron spectroscopy results [12].
In conclusions, we present an ab-initio approach to cal-

culate the terms of the spin Hamiltonians for molecular
nanomagnets. It is based on the construction of many-
body Hubbard-like models, using Foster-Boys orbitals as
a one-electron basis [35]. We show that this scheme works
remarkably well for MNMs. For all systems considered,
our results are closer to the experimental finding than
those obtained by total-energy spin-configurations calcu-

lations based on the B3LYP functional [18]. Differently
than spin-configurations based approaches, our method
allows us to determine the spin models without a priori

assumptions on the form and the range of the Hamil-
tonian; furthermore, since it yields the parameters of
the Hubbard model, it works also when charge fluctu-
ations are sizable and the spin is not well defined, like
for molecules with metal-metal bonds [37], or when elec-
trons are less localized, such as in 4d and 5d systems,
and can be used to calculate spectra. This scheme is
flexible, its complexity does not increase when the sym-
metry is low, and it does not rely on the B3LYP or
LDA+U approximation to correlation effects. It could
become essential for modeling MNMs whose spin Hamil-
tonian contain many anisotropic terms, in particular if
the principal-axis directions and relative magnitude can-
not be inferred simply by inspecting the molecular struc-
ture, as often the case for Co or f -electron systems. Fi-
nally, the many-body models for small MNMs can be still
exactly solvable, allowing to test approximations often
adopted but impossible to test in bulk correlated sys-
tems. Thus, we believe that our approach could become
the method of choice for exploring fundamental issues
and testing approximations, and for identifying and de-
signing new molecules for quantum devices.

Calculations were done on the Jülich supercomputer
Juropa, grant number JIFF46. E.P. acknowledges finan-
cial support from the Deutsche Forschungsgemeinschaft
through research unit FOR1346.
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