435 research outputs found

    From morphological heterogeneity at alveolar level to the overall mechanical lung behavior: an in vivo microscopic imaging study.

    Get PDF
    In six male anesthetized, tracheotomized, and mechanically ventilated rabbits, we imaged subpleural alveoli under microscopic view (60×) through a "pleural window" obtained by stripping the endothoracic fascia and leaving the parietal pleura intact. Three different imaging scale levels were identified for the analysis on increasing stepwise local distending pressure (P ld) up to 16.5 cmH2O: alveoli, alveolar cluster, and whole image field. Alveolar profiles were manually traced, clusters of alveoli of similar size were identified through a contiguity-constrained hierarchical agglomerative clustering analysis and alveolar surface density (ASD) was estimated as the percentage of air on the whole image field. Alveolar area distributions were remarkably right-skewed and showed an increase in median value with a large topology-independent heterogeneity on increasing P ld. Modeling of alveolar area distributions on increasing P ld led to hypothesize that absolute alveolar compliance (change in surface area over change in P ld) increases fairly linearly with increasing initial alveolar size, the corollary of this assumption being a constant specific compliance. Clusters were reciprocally interweaved due to their highly variable complex shapes. ASD was found to increase with a small coefficient of variation (CV <25\%) with increasing P ld. The CV of lung volume at each transpulmonary pressure was further decreased (about 6\%). The results of the study suggest that the considerable heterogeneity of alveolar size and of the corresponding alveolar mechanical behavior are homogenously distributed, resulting in a substantially homogenous mechanical behavior of lung units and whole organ

    Structural and functional diversity of ferredoxin-NADP+ reductases

    Get PDF
    Although all ferredoxin-NADP+ reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure–function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP+ to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design

    Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme

    Get PDF
    Renalase is a flavoprotein recently discovered in humans, preferentially expressed in the proximal tubules of the kidney and secreted in blood and urine. It is highly conserved in vertebrates, with homologs identified in eukaryotic and prokaryotic organisms. Several genetic, epidemiological, clinical and experimental studies show that renalase plays a role in the modulation of the functions of the cardiovascular system, being particularly active in decreasing the catecholaminergic tone, in lowering blood pressure and in exerting a protective action against myocardial ischemic damage. Deficient renalase synthesis might be the cause of the high occurrence of hypertension and adverse cardiac events in kidney disease patients. Very recently, recombinant human renalase has been structurally and functionally characterized in vitro. Results show that it belongs to the p-hydroxybenzoate hydroxylase structural family of flavoenzymes, contains non-covalently bound FAD with redox features suggestive of a dehydrogenase activity, and is not a catecholamine-degrading enzyme, either through oxidase or NAD(P)H-dependent monooxygenase reactions. The biochemical data now available will hopefully provide the basis for a systematic and rational quest toward the identification of the reaction catalyzed by renalase and of the molecular mechanism of its physiological action, which in turn are expected to favor the development of novel therapeutic tools for the treatment of kidney and cardiovascular diseases

    Spontaneous breathing pattern as respiratory functional outcome in children with spinal muscular atrophy (SMA)

    Get PDF
    Introduction: SMA is characterised by progressive motor and respiratory muscle weakness. We aimed to verify if in SMA children 1)each form is characterized by specific ventilatory and thoracoabdominal pattern(VTAp) during quiet breathing(QB); 2)VTAp is affected by salbutamol therapy, currently suggested as standard treatment, or by the natural history(NH) of SMA; 3)the severity of global motor impairment linearly correlates with VTAp. Materials and methods: VTAp was analysed on 32 SMA type I (SMA1, the most severe form), 51 type II (SMA2, the moderate), 8 type III (SMA3, the mildest) and 20 healthy (HC) using opto-electronic plethysmography. Spirometry, cough and motor function were measured in a subgroup of patients. Results: In SMA1, a normal ventilation is obtained in supine position by rapid and shallow breathing with paradoxical ribcage motion. In SMA2, ventilation is within a normal range in seated position due to an increased respiratory rate(p0.05) while tachypnea occurred in type I NH. A linear correlation(p<0.001) was found between motor function scales and VTAp. Conclusion: A negative or reduced %ΔVRC,P, indicative of ribcage muscle weakness, is a distinctive feature of SMA1 and SMA2 since infancy. Its quantitative assessment represents a non-invasive, non-volitional index that can be obtained in all children, even uncollaborative, and provides useful information on the action of ribcage muscles that are known to be affected by the disease. Low values of motor function scales indicate impairment of motor but also of respiratory function

    Pulmonary and chest wall function in obese adults

    Get PDF
    Obesity is frequently associated with breathing disorders. To investigate if and how the highest levels of obesity impact respiratory function, 17 subjects with obesity (median age: 49&nbsp;years; BMI: 39.7&nbsp;kg/m2, 8 females) and 10 normal-weighted subjects (49&nbsp;years; 23.9&nbsp;kg/m2, 5 females) were studied. The abdominal volume occupied 41% in the&nbsp;obese group, being higher (p &lt; 0.001) than the normal-weighted group (31%), indicating accumulation of abdominal fat. Restrictive lung defect was present in 17% of subjects with obesity. At rest in the supine position, subjects with obesity breathed with higher minute ventilation (11.9 L/min) and lower ribcage contribution (5.7%) than normal weighted subjects (7.5 L/min, p = 0.001 and 31.1%, p = 0.003, respectively), thus&nbsp;indicating thoracic restriction. Otherwise healthy obesity might not be characterized by a systematic restrictive lung pattern. Despite this, another sign of restriction could be poor thoracic expansion at rest in the supine position, resulting in increased ventilation. Class 3 obesity made respiratory rate further increased. Opto-electronic plethysmography and its thoraco-abdominal analysis of awake breathing add viable and interesting information in subjects with obesity that were complementary to pulmonary function tests. In addition, OEP is able to localize the restrictive effect of obesity

    Efficacy of lung volume optimization maneuver monitored by optoelectronic pletismography in the management of congenital diaphragmatic hernia

    Get PDF
    Newborns affected by congenital diaphragmatic hernia (CDH) need cardio-respiratory stabilization before undergoing surgical repair. Open lung strategy is a well-established approach to optimize lung volume in preterm infants with Respiratory Distress Syndrome (RDS), using both High Frequency Oscillatory Ventilation (HFOV) and Conventional Mechanical Ventilation (CMV). We report a case of left CDH with severe lung hypoplasia, managed applying open lung strategy in HFOV (pre-surgery period) and in Assist-Control with Volume Guarantee (post-surgery period), guided by SpO2changes, TcPO2and TcPCO2monitoring. Opto-electronic plethysmography was used to measure end-expiratory chest wall volume changes (ΔEEcw) related to lung volume variations occurring during pressure changes. OEP confirmed the efficacy of using SpO2and transcutaneous gas monitoring during this recruitment maneuver

    Efecto del ácido clorhídrico y ácido láctico sobre el desarrollo de cepas de Listeria spp. aisladas de alimentos

    Get PDF
    Listeria puede desarrollar en un amplio rango de pH, tolerando medio ácido hasta pH 4.4. El objetivo fue estudiar in vitro el comportamiento de 30 cepas de Listeria spp. aisladas de alimentos (2 cepas de L. welshimeri, 4 L. seeligeri, 3 L. monocytogenes tipo 4, 8 L. monocytogenes tipo 1, y 13 L. innocua), modificando el pH por adición de HCl y ácido láctico.Mesa: Alimentos y Bebidas.Facultad de Ciencias Veterinaria

    Ferredoxin-NADP(+) reductase from Plasmodium falciparum undergoes NADP(+)-dependent dimerization and inactivation: functional and crystallographic analysis

    Get PDF
    The completion of the Plasmodium falciparum genome sequence has recently promoted the search for new antimalarial drugs. More specifically, metabolic pathways of the apicoplast, a key organelle for survival of the parasite, have been recognized as potential targets for the development of specific new antimalarial agents. As most apicomplexan parasites, P. falciparum displays a plant-type ferredoxin-NADP(+) reductase, yielding reduced ferredoxin for essential biosynthetic pathways in the apicoplast. Here we report a molecular, kinetic and ligand binding characterization of the recombinant ferredoxin-NADP(+) reductase from P. falciparum, in the light of current data available for plant ferredoxin-NADP(+) reductases. In parallel with the functional characterization, we describe the crystal structures of P. falciparum ferredoxin-NADP(+) reductase in free form and in complex with 2'-phospho-AMP (at 2.4 and 2.7 A resolution, respectively). The enzyme displays structural properties likely to be unique to plasmodial reductases. In particular, the two crystal structures highlight a covalent dimer, which relies on the oxidation of residue Cys99 in two opposing subunits, and a helix-coil transition that occurs in the NADP-binding domain, triggered by 2'-phospho-AMP binding. Studies in solution show that NADP(+), as well as 2'-phospho-AMP, promotes the formation of the disulfide-stabilized dimer. The isolated dimer is essentially inactive, but full activity is recovered upon disulfide reduction. The occurrence of residues unique to the plasmodial enzyme, and the discovery of specific conformational properties, highlight the NADP-binding domain of P. falciparum ferredoxin-NADP(+) reductase as particularly suited for the rational development of antimalarial compounds

    Comportamiento de 30 cepas de Listeria spp. aisladas de alimentos

    Get PDF
    Listeria monocytogenes es un patógeno que afecta a animales y humanos produciendo infecciones que pueden ser fatales en individuos susceptibles. Los alimentos son fuente de contaminación, siendo más riesgosos los listos para consumir. El objetivo fue estudiar el comportamiento de 30 cepas de Listeria spp. (2 cepas de L. welshimeri, 4 L. seeligeri, 3 L. monocytogenes tipo 4, 8 L. monocytogenes tipo 1, y 13 L. innocua) aisladas de alimentos principalmente en su mayoría embutidos, frente a diferentes condiciones que pueden presentarse en este tipo de productos.Mesa:Alimentos y VacunasFacultad de Ciencias Veterinaria
    • …
    corecore