11,432 research outputs found
Response of mouse epidermal cells to single doses of heavy-particles
The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions
Non-thermal X-ray Emission: An Alternative to Cluster Cooling Flows?
We report the results of experiments aimed at reducing the major problem with
cooling flow models of rich cluster X-ray sources: the fact that most of the
cooled gas or its products have not been found. Here we show that much of the
X-ray emission usually attributed to cooling flows can, in fact, be modeled by
a power-law component which is indicative of a source(s) other than thermal
bremsstrahlung from the intracluster medium. We find that adequate simultaneous
fits to ROSAT PSPCB and ASCA GIS/SIS spectra of the central regions of ten
clusters are obtained for two-component models that include a thermal plasma
component that is attributable to hot intracluster gas and a power-law
component that is likely generated by compact sources and/or extended
non-thermal emission. For five of the clusters that purportedly have massive
cooling flows, the best-fit models have power-law components that contribute
30 % of the total flux (0.14 - 10.0 keV) within the central 3
arcminutes. Because cooling flow mass deposition rates are inferred from X-ray
fluxes, our finding opens the possibility of significantly reducing cooling
rates.Comment: 11 pages, 3 figures, emulateapj style. Accepted for publication in
Ap
Radiation trapping in coherent media
We show that the effective decay rate of Zeeman coherence, generated in a
Rb87 vapor by linearly polarized laser light, increases significantly with the
atomic density. We explain this phenomenon as the result of radiation trapping.
Our study shows that radiation trapping must be taken into account to fully
understand many electromagnetically induced transparency experiments with
optically thick media
Trains, tails and loops of partially adsorbed semi-flexible filaments
Polymer adsorption is a fundamental problem in statistical mechanics that has
direct relevance to diverse disciplines ranging from biological lubrication to
stability of colloidal suspensions. We combine experiments with computer
simulations to investigate depletion induced adsorption of semi-flexible
polymers onto a hard-wall. Three dimensional filament configurations of
partially adsorbed F-actin polymers are visualized with total internal
reflection fluorescence microscopy. This information is used to determine the
location of the adsorption/desorption transition and extract the statistics of
trains, tails and loops of partially adsorbed filament configurations. In
contrast to long flexible filaments which primarily desorb by the formation of
loops, the desorption of stiff, finite-sized filaments is largely driven by
fluctuating filament tails. Simulations quantitatively reproduce our
experimental data and allow us to extract universal laws that explain scaling
of the adsorption-desorption transition with relevant microscopic parameters.
Our results demonstrate how the adhesion strength, filament stiffness, length,
as well as the configurational space accessible to the desorbed filament can be
used to design the characteristics of filament adsorption and thus engineer
properties of composite biopolymeric materials
Carbon dioxide tolerance studies
Human tolerance to exposure of carbon dioxide environmen
NMR study of a bimesogenic liquid crystal with two nematic phases
Recent interest in bimesogenic liquid crystals showing two nematic phases has led us to investigate the nematic mean-field interactions in these nematic phases by using rigid solutes as probes. The nematic potential that is modelled by two independent Maier-Saupe terms is successful in fitting the observed dipolar couplings (order parameters) of para-, meta- and ortho-dichlorobenzene solutes in both the nematic phases of 39 wt% of 4-n-pentyl-4′-cyanobiphenyl (5CB) in α,ω-bis(4-4′-cyanobiphenyl)nonane (CB_C9_CB) to better than the 5% level. The derived liquid-crystal potential parameters G₁ and G₂ for each solute in the N and Ntb phases will be discussed. The most interesting observation is that G1 (associated with size and shape interactions) is almost constant in the Ntb phase, whereas G₂ (associated with longer-range electrostatic interactions) has large variation, even changing sign
Hall-Effect for Neutral Atoms
It is shown that polarizable neutral systems can drift in crossed magnetic
and electric fileds. The drift velocity is perpendicular to both fields, but
contrary to the drif t velocity of a charged particle, it exists only, if
fields vary in space or in time. We develop an adiabatic theory of this
phenomenon and analyze conditions of its experimental observation. The most
proper objects for the observation of this effect are Rydberg atoms. It can be
applied for the separation of excited atoms.Comment: RevTex, 4 pages; to be published in Pis'ma v ZhET
- …