246 research outputs found

    Reconstructing the thermal Green functions at real times from those at imaginary times

    Get PDF
    By exploiting the analyticity and boundary value properties of the thermal Green functions that result from the KMS condition in both time and energy complex variables, we treat the general (non-perturbative) problem of recovering the thermal functions at real times from the corresponding functions at imaginary times, introduced as primary objects in the Matsubara formalism. The key property on which we rely is the fact that the Fourier transforms of the retarded and advanced functions in the energy variable have to be the `unique Carlsonian analytic interpolations' of the Fourier coefficients of the imaginary-time correlator, the latter being taken at the discrete Matsubara imaginary energies, respectively in the upper and lower half-planes. Starting from the Fourier coefficients regarded as `data set', we then develop a method based on the Pollaczek polynomials for constructing explicitly their analytic interpolations.Comment: 23 pages, 2 figure

    The Hausdorff moments in statistical mechanics

    Get PDF
    A new method for solving the Hausdorff moment problem is presented which makes use of Pollaczek polynomials. This problem is severely ill posed; a regularized solution is obtained without any use of prior knowledge. When the problem is treated in the L 2 space and the moments are finite in number and affected by noise or round‐off errors, the approximation converges asymptotically in the L 2 norm. The method is applied to various questions of statistical mechanics and in particular to the determination of the density of states. Concerning this latter problem the method is extended to include distribution valued densities. Computing the Laplace transform of the expansion a new series representation of the partition function Z(β) (β=1/k BT ) is obtained which coincides with a Watson resummation of the high‐temperature series for Z(β)

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    Excited States in 52Fe and the Origin of the Yrast Trap at I=12+

    Full text link
    Excited states in 52Fe have been determined up to spin 10\hbar in the reaction 28Si + 28Si at 115 MeV by using \gamma-ray spectroscopy methods at the GASP array. The excitation energy of the yrast 10+ state has been determined to be 7.381 MeV, almost 0.5 MeV above the well known \beta+-decaying yrast 12+ state, definitely confirming the nature of its isomeric character. The mean lifetimes of the states have been measured by using the Doppler Shift Attenuation method. The experimental data are compared with spherical shell model calculations in the full pf-shell.Comment: 9 pages, RevTeX, 7 figures include

    Structure of the icosahedral Ti-Zr-Ni quasicrystal

    Full text link
    The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined by invoking similarities to periodic crystalline phases, diffraction data and the results from ab initio calculations. The structure is modeled by decorations of the canonical cell tiling geometry. The initial decoration model is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1 approximant structure of the quasicrystal. The decoration model is optimized using a new method of structural analysis combining a least-squares refinement of diffraction data with results from ab initio calculations. The resulting structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration rule and structural details are discussed.Comment: 12 pages, 8 figure
    corecore