193 research outputs found
Homing Guidance Using Spatially Quantized Signals
This paper considers homing guidance for a vehicle with a single omnidirectional receiver traveling to a stationary, omnidirectional transmitting beacon by using spatially quantized signal strength measurements. Two homing strategies are presented, and simulations are performed for cases with signal noise and vehicle turn rate limits. The first strategy is the Oyler strategy, which adapts a sliding mode controller and observer from the previous work. The second strategy is based on constant heading changes (CHCs) each time a range increment is detected, and this strategy is shown to be sufficient for homing. This study also discusses a signal filter designed to improve the homing controllers' performance. Performance metrics are developed for strategy evaluation and parameter optimization. The performance of each guidance strategy is shown through simulations for a variety of conditions. The Oyler strategy guides the vehicle to the beacon more efficiently than the constant heading change strategy, but it comes with a slight penalty in success rate
Multilevel human secondary lymphoid immune system compartmentalization revealed by complementary imaging approaches.
Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions
From Ideal to Practice and Back Again: Beginning Teachers Teaching for Social Justice
The five authors of this article designed a multicase study to follow recent graduates of an elementary preservice teacher education program into their beginning teaching placements and explore the ways in which they enacted social justice curricula. The authors highlight the stories of three beginning teachers, honoring the plurality of their conceptions of social justice teaching and the resiliency they exhibited in translating social justice ideals into viable pedagogy. They also discuss the struggles the teachers faced when enacting social justice curricula and the tenuous connection they perceived between their conceptions and their practices. The authors emphasize that such struggles are inevitable and end the article with recommendations for ways in which teacher educators can prepare beginning teachers for the uncertain journey of teaching for social justice
Botulinum Neurotoxin Devoid of Receptor Binding Domain Translocates Active Protease
Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The ∼50 kDa light chain (LC) protease is translocated into the cytosol by the ∼100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication
A Single Amino Acid Mutation in SNAP-25 Induces Anxiety-Related Behavior in Mouse
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser187 of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser187 of SNAP-25 with Ala using “knock-in” technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects
A review of Fe-chalcogenide superconductors: the simplest Fe-based superconductor
Here we summarize the physical properties of the newly discovered
Fe-chalcogenide superconductors. The Fe-chalcogenide superconductors attract us
as the simplest Fe-based superconductors. Furthermore, Fe chalcogenides show a
huge pressure effect on their superconducting properties. The origin of the
high transition temperature was discussed with both the change in crystal
structure and magnetism. The progress on the thin-film and superconducting-wire
fabrications are also described.Comment: A review article of Fe-chalcogenide superconductor submitted to J.
Phys. Soc. Jpn. 51 pages, 54 figures including reprinted from the published
paper
The analysis of latent fingermarks on polymer banknotes using MALDI-MS
In September 2016, the UK adopted a new Bank of England (BoE) £5 polymer banknote, followed by the £10 polymer banknote in September 2017. They are designed to be cleaner, stronger and have increased counterfeit resilience; however, fingermark development can be problematic from the polymer material as various security features and coloured/textured areas have been found to alter the effectiveness of conventional fingermark enhancement techniques (FETs). As fingermarks are one of the most widely used forms of identification in forensic cases, it is important that maximum ridge detail be obtained in order to allow for comparison. This research explores the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) profiling and imaging for the analysis of fingermarks deposited on polymer banknotes. The proposed methodology was able to obtain both physical and chemical information from fingermarks deposited in a range of scenarios including; different note areas, depletion series, aged samples and following conventional FETs. The analysis of forensically important molecular targets within these fingermarks was also explored, focussing specifically on cocaine. The ability of MALDI-MS to provide ridge detail and chemical information highlights the forensic applicability of this technique and potential for the analysis of fingermarks deposited onto this problematic surface
Literacy and multilingualism in Africa
Literacy and multilingualism in Africa is approached here as a field of practice rather than a unified field of research. This field presents a crucial paradox: African contexts present some of the world’s most diverse and vital multilingual situations but also feature in the world’s poorest literacy rates and are routinely said to lack a literate tradition altogether. By reviewing Africa’s script inventions this chapter offers counter-evidence for this deceptive view. Throughout Africa – from the Maghreb over West and Central Africa to the Horn of Africa – there have been significant indigenous script traditions and inventions, including Tifinagh, N’ko, Vai, Bamum and Ge’ez. In fact, some of the world’s oldest known scripts (e.g. Egyptian hieroglyphs) are African scripts. The chapter further outlines two relatively young fields of practice and research that have begun to make major contributions to literacy and multilingualism in Africa: digital literacy and linguistic landscape. These fields share a common interest in the materiality of real language as opposed to idealized images of language and in local agency and creativity in the site of struggle that is language. Like digital language practices, linguistic landscapes constitute a domain for African written multilingualism that is not generally supported or monitored by African states. Nor does either field present simple continuities from colonially inherited language policies and ideologies, in the way that classrooms do. As spaces for writing par excellence linguistic landscapes and mobile phones promise to contribute in no minor way to the development of African language literacies and multilingualism in Africa
Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique
Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented
- …