980 research outputs found

    Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury

    Get PDF
    Endothelial cells in the kidney microvasculature have an intrinsic molecular and phenotypic heterogeneity and respond to sepsis-induced acute kidney injury conditions in a segment-specific manner. This Review discusses the roles of these cells and the molecular systems that control endothelial functions in the development of sepsis-induced acute kidney injury. Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis

    Severe mesenteric ischemia with multiple organ failure in a patient previously treated with a humanized monoclonal antibody against programmed death receptor-1 (pembrolizumab), a case of pembrolizumab associated catastrophic antiphospholipid syndrome?

    Get PDF
    Immune checkpoint inhibitors are used in the treatment of different types of tumors including melanoma and non-small cell lung carcinoma. The use of these inhibitors is associated with a broad spectrum of immune-related adverse effects. Here we report a case of a patient admitted to the intensive care unit with multiple organ failure due to catastrophic antiphospholipid syndrome following treatment with pembrolizumab, an immune checkpoint inhibitor, because of metastatic melanoma. The presented patient had multiple organ failure of lung, gastro-intestinal, renal, and the liver. Vascular thrombosis was confirmed by both imaging (pulmonary embolism on computed tomography-thorax) and histopathological examination of the intestines. In combination with the presence of IgA anti-cardiolipin antibodies and initially IgM anti-cardiolipin antibodies, catastrophic antiphospholipid syndrome was suspected. Despite treatment with plasmapheresis and corticosteroids, the patient died due to multiple organ failure. Catastrophic antiphospholipid syndrome is difficult to recognize and has high mortality rates despite supportive treatment. In this case report, discussion is provided regarding the possible immunological mechanism behind catastrophic antiphospholipid syndrome during or after treatment with immune checkpoint inhibitors. It is important to realize that in modern intensive care unit, more patients with immune-related adverse effects of the treatment with immune checkpoint inhibitors will be admitted, because of an increase in the number of patients treated with these checkpoint inhibitors. When these patients are admitted on the intensive care unit, multi-disciplinary consultation is important because of the difficulty of early recognition and optimal treatment of these possible lethal side effects

    Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data

    Get PDF
    Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans

    Rectification of thermal fluctuations in ideal gases

    Get PDF
    We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced in [Van den Broeck, Kawai and Meurs, \emph{Microscopic analysis of a thermal Brownian motor}, to appear in Phys. Rev. Lett.], by an expansion of the Boltzmann equation and compare with the exact numerical solution.Comment: 18 page

    Onderzoek naar de oorzaak van kromme vruchten bij glasaardbeien, : rapportage 2003-2004 en eindconclusies

    Get PDF
    Kromme vruchten is een jaarlijks terugkerend probleem in de doorteelt van aardbeien. Vervroegen door zwaarder stoken bergt het risico in zich van kromme vruchten. Hoewel rasverschillen een rol spelen gaat het om een algemeen fysiologisch principe

    Gender specific effects of the calcium channel TRPV4 on osteoporotic fracture risk and osteoblast-osteoclast coupling

    Get PDF
    TRPV4 is a member of the transient receptor potential (TRP) superfamily and responds to an array of stimuli, including osmolarity, pH and pressure. Recent findings showing that TRPV4 deficiency leads to reduced sensing of mechanical stimuli led us to explore the role of TRPV4 in bone. TRPV4 mRNA was abundantly expressed in both osteoblasts and osteoclasts as assessed by qPCR. Femoral cortical and trabecular bone mass as assessed by microcomputed tomography was higher in male TRPV4 knockout mice compared to wild type mice. Despite thicker bone structures, cortical porosity was increased in the male TRPV4 knockout mice leading to reduced bone strength as assessed by 3-point bending. Osteoclast and osteoblast differentiation and function was studied, using bone marrow cultures from wildtype and TRPV4 knockout mice. Osteoclast numbers as well as the formation of resorption pits were significantly reduced in cultures of TRPV4 knockout mice compared to wildtype littermates. In contrast, osteoblast differentiation and matrix mineralization was significantly increased in TRPV4 knockout bone marrow cultures. None of these parameters were significantly different in bones and bone marrow cultures of female knock out mice. These data implicate a gender-specific osteoblast–osteoclast uncoupling and support the observed increase in bone mass in male TRPV4 deficient mice. To assess the possible impact of TRPV4 on osteoporotic outcome in humans, we extracted data from the genome-wide association study within the Rotterdam Study. Two single nucleotide polymorphisms (SNPs) in the TRPV4 gene showed strong associations with osteoporotic fracture risk fragility fracture risk and hip fracture risk in men, but not in women. This was not affected after adjusting for height, weight, age and bone mineral density (BMD). In conclusion, TRPV4 plays an important role in male but not female bone biology. Apparently, the increased periosteal bone apposition fails to overcome the increased cortical porosity, leading to reduced bone strength in TRPV4 deficient male mice. In line with the gender-specific findings in mice, variations in the TRPV4 gene are predicting fracture risk in men but not in women

    Metabolic syndrome, radiographic osteoarthritis progression and chronic pain of the knee among men and women from the general population:The Rotterdam study

    Get PDF
    Objective: Although a relationship between osteoarthritis and components of metabolic syndrome (MetS) has been suggested, most of the results have been cross-sectional. We, therefore, aimed to investigate the sex-specific longitudinal association of (components of) MetS with progression of radiographic osteoarthritis and chronic pain in the knee joints in a large prospective cohort. Method: In the large population-based Rotterdam study of up to 6,138 individuals, median follow-up time 5.7 (IQR 5.5) years, we examined the relation between MetS and its components (abdominal obesity, high triglycerides, low high-density lipoprotein, elevated blood pressure, and type 2 diabetes) with the progression of osteoarthritis using generalized estimating equations, generalized linear models and competing risk analysis. Analyses were stratified for sex. Covariates adjusted for: age, smoking, alcohol use, education, sub-cohort, baseline K/L grade, months between radiographs and BMI. Results: The presence of MetS (37.6 % in men, 39 % in women) and elevated blood pressure was associated with an increased risk of knee osteoarthritis progression in both men and women. MetS was associated with an increased risk of incident chronic knee pain (CKP) in men. In addition, abdominal obesity and high triglycerides showed higher riskfor incidence of CKP in men,but not in women. The associations were attenuated and no longer significant after BMI-adjustment, except for the association of MetS and high triglycerides with incidence of CKP in men that stayed significant (OR 1.04, 95 %CI 1.00–1.07 for MetS and OR 1.04, 95 %CI 1.01–1.07 for high triglycerides). Conclusion: Metabolic syndrome and individual metabolic components, such as abdominal obesity and elevated blood pressure, were associated with radiographic progression of knee OA in both men and women, but not independent of BMI. Metabolic syndrome and high triglycerides were associated with incidence of CKP only in men.</p

    The effect of targeting Tie2 on hemorrhagic shock-induced renal perfusion disturbances in rats

    Get PDF
    Background: Hemorrhagic shock is associated with acute kidney injury and increased mortality. Targeting the endothelial angiopoietin/Tie2 system, which regulates endothelial permeability, previously reduced hemorrhagic shock-induced vascular leakage. We hypothesized that as a consequence of vascular leakage, renal perfusion and function is impaired and that activating Tie2 restores renal perfusion and function. Methods: Rats underwent 1 h of hemorrhagic shock and were treated with either vasculotide or PBS as control, followed by fluid resuscitation for 4 h. Microcirculatory perfusion was measured in the renal cortex and cremaster muscle using contrast echography and intravital microscopy, respectively. Changes in the angiopoietin/Tie2 system and renal injury markers were measured in plasma and on protein and mRNA level in renal tissue. Renal edema formation was determined by wet/dry weight ratios and renal structure by histological analysis. Results: Hemorrhagic shock significantly decreased renal perfusion (240 +/- 138 to 51 +/- 40, p 0.9 at all time points) or reduce renal injury (NGAL p = 0.26, KIM-1 p = 0.78, creatinine p > 0.9, renal edema p = 0.08), but temporarily improved cremaster perfusion at 3 h following start of fluid resuscitation compared to untreated rats (resuscitation + 3 h: 11 +/- 3 vs 8 +/- 3 perfused vessels, p < 0.05). Conclusion: Hemorrhagic shock-induced renal impairment cannot be restored by standard fluid resuscitation, nor by activation of Tie2. Future treatment strategies should focus on reducing angiopoietin-2 levels or on activating Tie2 via an alternative strategy

    Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution

    Get PDF
    We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking.</p

    Endothelium-targeted delivery of dexamethasone by anti-VCAM-1 SAINT-O-Somes in mouse endotoxemia

    Get PDF
    Microvascular endothelial cells play a pivotal role in the pathogenesis of sepsis-induced inflammatory responses and multiple organ failure. Therefore, they represent an important target for pharmacological intervention in the treatment of sepsis. Glucocorticosteroids were widely used in the treatment of sepsis but vast evidence to support their systemic use is lacking. The limited effects of glucocorticoids in the treatment of sepsis may be explained by differential effects of drug initiated NF-κB inhibition in different cell types and insufficient drug delivery in target cells. The current study aimed therefore to investigate the effects of an endothelial targeted delivery of dexamethasone in a mouse model of endotoxemia induced by two consecutive i.p. injections of lipopolysaccharide (LPS). To achieve endothelial cell specific delivery of dexamethasone, we modified SAINT-O-Somes, a new generation of liposomes that contain the cationic amphiphile SAINT-C18 (1-methyl-4-(cis-9-dioleyl) methyl-pyridinium chloride, with antibodies against vascular cell adhesion molecule-1 (VCAM-1). In LPS challenged mice, the systemic administration of free dexamethasone had negligible effects on the microvascular inflammatory endothelial responses. Dexamethasone-loaded anti-VCAM-1 SAINT-O-Somes specifically localized at VCAM-1 expressing endothelial cells in the microvasculature of inflamed organs. This was associated with a marginal attenuation of the expression of a few pro-inflammatory genes in kidney and liver, while no effects in the lung were observed. This study reveals that, although local accumulation of the targeted drug was achieved, endothelial targeted dexamethasone containing anti-VCAM-1 SAINT-O-Somes exhibited marginal effects on inflammatory endothelial cell activation in a model of endotoxemia. Studies with more potent drugs encapsulated into anti-VCAM-1 SAINT-O-Somes will in the future reveal whether this delivery system can be further developed for efficacious endothelial directed delivery of drugs in the treatment of sepsis
    • …
    corecore