6,082 research outputs found
Nonlinear Interferometry via Fock State Projection
We use a photon-number resolving detector to monitor the photon number
distribution of the output of an interferometer, as a function of phase delay.
As inputs we use coherent states with mean photon number up to seven. The
postselection of a specific Fock (photon-number) state effectively induces
high-order optical non-linearities. Following a scheme by Bentley and Boyd
[S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this
effect to demonstrate interference patterns a factor of five smaller than the
Rayleigh limit.Comment: 4 pages, 5 figure
Classical Duals, Legendre Transforms and the Vainshtein Mechanism
We show how to generalize the classical duals found by Gabadadze {\it et al}
to a very large class of self-interacting theories. This enables one to adopt a
perturbative description beyond the scale at which classical perturbation
theory breaks down in the original theory. This is particularly relevant if we
want to test modified gravity scenarios that exhibit Vainshtein screening on
solar system scales. We recognise the duals as being related to the Legendre
transform of the original Lagrangian, and present a practical method for
finding the dual in general; our methods can also be applied to
self-interacting theories with a hierarchy of strong coupling scales, and with
multiple fields. We find the classical dual of the full quintic galileon theory
as an example.Comment: 16 page
Orbital angular momentum exchange in an optical parametric oscillator
We present a study of orbital angular momentum transfer from pump to
down-converted beams in a type-II Optical Parametric Oscillator. Cavity and
anisotropy effects are investigated and demostrated to play a central role in
the transverse mode dynamics. While the idler beam can oscillate in a
Laguerre-Gauss mode, the crystal birefringence induces an astigmatic effect in
the signal beam that prevents the resonance of such mode.Comment: 10 pages, 8 figures, regular articl
Phase detection at the quantum limit with multi-photon Mach-Zehnder interferometry
We study a Mach-Zehnder interferometer fed by a coherent state in one input
port and vacuum in the other. We explore a Bayesian phase estimation strategy
to demonstrate that it is possible to achieve the standard quantum limit
independently from the true value of the phase shift and specific assumptions
on the noise of the interferometer. We have been able to implement the protocol
using parallel operation of two photon-number-resolving detectors and
multiphoton coincidence logic electronics at the output ports of a
weakly-illuminated Mach-Zehnder interferometer. This protocol is unbiased and
saturates the Cramer-Rao phase uncertainty bound and, therefore, is an optimal
phase estimation strategy.Comment: 4 pages, 5 figures replaced fig. 1 to correct graphics bu
Vector Bundle Moduli and Small Instanton Transitions
We give the general presciption for calculating the moduli of irreducible,
stable SU(n) holomorphic vector bundles with positive spectral covers over
elliptically fibered Calabi-Yau threefolds. Explicit results are presented for
Hirzebruch base surfaces B=F_r. The transition moduli that are produced by
chirality changing small instanton phase transitions are defined and
specifically enumerated. The origin of these moduli, as the deformations of the
spectral cover restricted to the ``lift'' of the horizontal curve of the
M5-brane, is discussed. We present an alternative description of the transition
moduli as the sections of rank n holomorphic vector bundles over the M5-brane
curve and give explicit examples. Vector bundle moduli appear as gauge singlet
scalar fields in the effective low-energy actions of heterotic superstrings and
heterotic M-theory.Comment: 52 pages, LATEX, corrected typo
Quantum Fields in a Big Crunch/Big Bang Spacetime
We consider quantum field theory on a spacetime representing the Big
Crunch/Big Bang transition postulated in the ekpyrotic or cyclic cosmologies.
We show via several independent methods that an essentially unique matching
rule holds connecting the incoming state, in which a single extra dimension
shrinks to zero, to the outgoing state in which it re-expands at the same rate.
For free fields in our construction there is no particle production from the
incoming adiabatic vacuum. When interactions are included the total particle
production for fixed external momentum is finite at tree level. We discuss a
formal correspondence between our construction and quantum field theory on de
Sitter spacetime.Comment: 30 pages, RevTex file, five postscript figure file
String production at the level of effective field theory
Pair creation of strings in time-dependent backgrounds is studied from an
effective field theory viewpoint, and some possible cosmological applications
are discussed. Simple estimates suggest that excited strings may have played a
significant role in preheating, if the string tension as measured in
four-dimensional Einstein frame falls a couple of orders of magnitude below the
four-dimensional Planck scale.Comment: 20 pages, latex2e. v2: a reference adde
- …