4,299 research outputs found
Stationary strings near a higher-dimensional rotating black hole
We study stationary string configurations in a space-time of a
higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto
equations for a stationary string in the 5D Myers-Perry metric allow a
separation of variables. We present these equations in the first-order form and
study their properties. We prove that the only stationary string configuration
which crosses the infinite red-shift surface and remains regular there is a
principal Killing string. A worldsheet of such a string is generated by a
principal null geodesic and a timelike at infinity Killing vector field. We
obtain principal Killing string solutions in the Myers-Perry metrics with an
arbitrary number of dimensions. It is shown that due to the interaction of a
string with a rotating black hole there is an angular momentum transfer from
the black hole to the string. We calculate the rate of this transfer in a
spacetime with an arbitrary number of dimensions. This effect slows down the
rotation of the black hole. We discuss possible final stationary configurations
of a rotating black hole interacting with a string.Comment: 13 pages, contains additianal material at the end of Section 8, also
small misprints are correcte
Perturbative and instanton corrections to the OPE of CPOs in N=4 SYM_4
We study perturbative and instanton corrections to the Operator Product
Expansion of the lowest weight Chiral Primary Operators of N=4 SYM_4. We
confirm the recently observed non-renormalization of various operators (notably
of the double-trace operator with dimension 4 in the 20 irrep of SU(4)), that
appear to be unprotected by unitarity restrictions. We demonstrate the
splitting of the free-field theory stress tensor and R-symmetry current in
supermultiplets acquiring different anomalous dimensions in perturbation theory
and argue that certain double-trace operators also undergo a perturbative
splitting into operators dual to string and two-particle gravity states
respectively. The instanton contributions affect only those double-trace
operators that acquire finite anomalous dimensions at strong coupling. For the
leading operators of this kind, we show that the ratio of their anomalous
dimensions at strong coupling to the anomalous dimensions due to instantons is
the same number.Comment: Latex, 26p, typos are removed, a strong-coupling anomalous dimension
of one of the double-trace operators is correcte
Thermonuclear burn-up in deuterated methane
The thermonuclear burn-up of highly compressed deuterated methane CD is
considered in the spherical geometry. The minimal required values of the
burn-up parameter are determined for various
temperatures and densities . It is shown that thermonuclear burn-up
in becomes possible in practice if its initial density exceeds
. Burn-up in CDT methane
requires significantly ( 100 times) lower compressions. The developed
approach can be used in order to compute the critical burn-up parameters in an
arbitrary deuterium containing fuel
Tachyon condensation and universality of DBI action
We show that a low-energy action for massless fluctuations around a tachyonic
soliton background representing a codimension one D-brane coincides with the
Dirac-Born-Infeld action. The scalar modes which describe transverse
oscillations of the D-brane are translational collective coordinates of the
soliton. The appearance of the DBI action is a universal feature independent of
details of a tachyon effective action, provided it has the structure implied by
the open string sigma model partition function.Comment: LaTex, 15 p. v2: references adde
Accretion of non-minimally coupled generalized Chaplygin gas into black holes
The mass evolution of Schwarzschild black holes by the absorption of scalar
fields is investigated in the scenario of the generalized Chaplygin gas (GCG).
The GCG works as a unification picture of dark matter plus dark energy that
naturally accelerates the expansion of the Universe. Through elements of the
quasi-stationary approach, we consider the mass evolution of Schwarzschild
black holes accreted by non-minimally coupled cosmological scalar fields
reproducing the dynamics of the GCG. As a scalar field non-minimally coupled to
the metrics, such an exotic content has been interconnected with accreting
black holes. The black hole increasing masses by the absorption of the gas
reflects some consistence of the accretion mechanism with the hypothesis of the
primordial origin of supermassive black holes. Our results effectively show
that the non-minimal coupling with the GCG dark sector accelerates the
increasing of black hole masses. Meanwhile some exotic features can also be
depicted for specific ranges of the non-minimal coupling in which the GCG
dynamics is substantially modified.Comment: 13 pages, 03 figure
Gauge field theory for Poincar\'{e}-Weyl group
On the basis of the general principles of a gauge field theory the gauge
theory for the Poincar\'{e}-Weyl group is constructed. It is shown that tetrads
are not true gauge fields, but represent functions from true gauge fields:
Lorentzian, translational and dilatational ones. The equations of gauge fields
which sources are an energy-momentum tensor, orbital and spin momemta, and also
a dilatational current of an external field are obtained. A new direct
interaction of the Lorentzian gauge field with the orbital momentum of an
external field appears, which describes some new effects. Geometrical
interpretation of the theory is developed and it is shown that as a result of
localization of the Poincar\'{e}-Weyl group spacetime becomes a Weyl-Cartan
space. Also the geometrical interpretation of a dilaton field as a component of
the metric tensor of a tangent space in Weyl-Cartan geometry is proposed.Comment: LaTex, 27 pages, no figure
Scattering of Straight Cosmic Strings by Black Holes: Weak Field Approximation
The scattering of a straight, infinitely long string moving with velocity
by a black hole is considered. We analyze the weak-field case, where the impact
parameter () is large, and obtain exact solutions to the equations of
motion. As a result of scattering, the string is displaced in the direction
perpendicular to the velocity by an amount , where . The second
term dominates at low velocities . The late-time
solution is represented by a kink and anti-kink, propagating in opposite
directions at the speed of light, and leaving behind them the string in a new
``phase''. The solutions are applied to the problem of string capture, and are
compared to numerical results.Comment: 19 pages, 5 figure
- …