10,005 research outputs found

    Radio and X-ray observations of an exceptional radio flare in the extreme z=4.72 blazar GB B1428+4217

    Full text link
    We report on the extreme behaviour of the high redshift blazar GB B1428+4217 at z=4.72. A continued programme of radio measurements has revealed an exceptional flare in the lightcurve, with the 15.2 GHz flux density rising by a factor ~3 from ~140 mJy to ~430 mJy in a rest-frame timescale of only ~4 months -- much larger than any previous flares observed in this source. In addition to new measurements of the 1.4-43 GHz radio spectrum we also present the analysis and results of a target-of-opportunity X-ray observation using XMM-Newton, made close to the peak in radio flux. Although the X-ray data do not show a flare in the high energy lightcurve, we are able to confirm the X-ray spectral variability hinted at in previous observations. GB B1428+4217 is one of several high-redshift radio-loud quasars that display a low energy break in the X-ray spectrum, probably due to the presence of excess absorption in the source. X-ray spectral analysis of the latest XMM-Newton data is shown to be consistent with the warm absorption scenario which we have hypothesized previously. Warm absorption is also consistent with the observed X-ray spectral variability of the source, in which the spectral changes can be successfully accounted-for with a fixed column density of material in which the ionization state is correlated with hardness of the underlying power-law emission.Comment: 8 pages, 5 figures, MNRAS accepte

    Water exchange at a hydrated platinum electrode is rare and collective

    Get PDF
    We use molecular dynamics simulations to study the exchange kinetics of water molecules at a model metal electrode surface -- exchange between water molecules in the bulk liquid and water molecules bound to the metal. This process is a rare event, with a mean residence time of a bound water of about 40 ns for the model we consider. With analysis borrowed from the techniques of rare-event sampling, we show how this exchange or desorption is controlled by (1) reorganization of the hydrogen bond network within the adlayer of bound water molecules, and by (2) interfacial density fluctuations of the bulk liquid adjacent to the adlayer. We define collective coordinates that describe the desorption mechanism. Spatial and temporal correlations associated with a single event extend over nanometers and tens of picoseconds.Comment: 10 pages, 9 figure

    Stratigraphic Strips: Variable Dimensions

    Get PDF
    The two projects created for the exhibition discuss two forms of reality: ‘the constructed and the revealed’. The installation oscillates between the scientific reality of Howard’s painstaking conservationbased stratigraphy and a fictionalised representation of that knowledge through the use of historic colour windows placed at key locations within the East Wing. The actual layering of the decoration within each space is both real and speculative - the distinction between the two often blurred, providing the viewer with an insight into the life of the spaces they use. Alan Chandler is a Specialist Conservation Architect with the London based practice Arts Lettres Techniques and a Reader in Architecture at the University of East London. Helen Howard is a Scientific Officer [Microscopist] at the National Gallery in London, an expert in non-invasive investigations of wall painting using optical coherence tomography and hyperspectral imaging. Architect Gilles Retsin works as senior designer at Kokkugia and directs computational architecture at the University of East London. Retsin’s computer coding explores the hidden structural details and materiality of buildings

    Perturbation theory of the mass enhancement for a polaron coupled to acoustic phonons

    Full text link
    We use both a perturbative Green's function analysis and standard perturbative quantum mechanics to calculate the decrease in energy and the effective mass for an electron interacting with acoustic phonons. The interaction is between the difference in lattice displacements for neighbouring ions, and the hopping amplitude for an electron between those two sites. The calculations are performed in one, two, and three dimensions, and comparisons are made with results from other electron-phonon models. We also compute the spectral function and quasiparticle residue, as a function of characteristic phonon frequency. There are strong indications that this model is always polaronic on one dimension, where an unusual relation between the effective mass and the quasiparticle residue is also found.Comment: 9 pages, 5 figures, submitted to PR

    Review of modern concepts in the engineering interpretation of earthquake response spectra

    Get PDF
    The design response spectrum is typically the starting point of most codified seismic design and assessment procedures and is used predominantly to prescribe the applied inertia forces induced by earthquake ground motions. This paper introduces and reviews modern concepts related to the effective development and application of earthquake design response spectra, including the conventional acceleration response spectrum, the velocity spectrum, and the displacement spectrum. It further briefly reviews the concepts of the inelastic response spectrum and the capacity spectrum. A number of the ideas presented are targeted particularly at assisting practising engineers working in low- and moderate-seismicity environments. The principal purpose is to enlighten engineers to modern concepts in response spectra development, in order to subsequently facilitate the effective use of the information contained in an earthquake response spectrum for both analysis and design applications.published_or_final_versio

    Anisotropic spatially heterogeneous dynamics in a model glass-forming binary mixture

    Full text link
    We calculated a four-point correlation function G_4(k,r;t) and the corresponding structure factor S_4(k,q;t) for a model glass-forming binary mixture. These functions measure the spatial correlations of the relaxation of different particles. We found that these four-point functions are anisotropic and depend on the angle between vectors k and r (or q). The anisotropy is the strongest for times somewhat longer than the beta relaxation time but it is quite pronounced even for times comparable to the alpha relaxation time, tau_alpha. At the lowest temperatures S_4(k,q;tau_alpha) is strongly anisotropic even for the smallest wavevector q accessible in our simulation

    The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    Get PDF
    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio

    Dynamics of Annihilation II: Fluctuations of Global Quantities

    Get PDF
    We develop a theory for fluctuations and correlations in a gas evolving under ballistic annihilation dynamics. Starting from the hierarchy of equations governing the evolution of microscopic densities in phase space, we subsequently restrict to a regime of spatial homogeneity, and obtain explicit predictions for the fluctuations and time correlation of the total number of particles, total linear momentum and total kinetic energy. Cross-correlations between these quantities are worked out as well. These predictions are successfully tested against Molecular Dynamics and Monte-Carlo simulations. This provides strong support for the theoretical approach developed, including the hydrodynamic treatment of the spectrum of the linearized Boltzmann operator. This article is a companion paper to arXiv:0801.2299 and makes use of the spectral analysis reported there.Comment: 19 page
    • …
    corecore