4,803 research outputs found
Collapse arrest and soliton stabilization in nonlocal nonlinear media
We investigate the properties of localized waves in systems governed by
nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding
the Hamiltonian that nonlocality of the nonlinearity prevents collapse in,
e.g., Bose-Einstein condensates and optical Kerr media in all physical
dimensions. The nonlocal nonlinear response must be symmetric, but can be of
completely arbitrary shape. We use variational techniques to find the soliton
solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
Nuclear spin-lattice relaxation rate in the D+iD superconducting state: implications for CoO superconductor
We calculated the nuclear spin-lattice relaxation rate for the D+iD
superconducting state with impurities. We found that small amount of unitary
impurities quickly produces the residual density of states inside the gap. As a
result, the T-linear behavior in 1/T is observed at low temperatures. Our
results show that the D+iD pairing symmetry of the superconducting state of
NaCoOH O is compatible with recent Co 1/T
experiments of several groups.Comment: 5 pages, 4 figures, minor change
Recommended from our members
Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser
The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6x10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed. DOI: 10.1103/PhysRevE.87.023106Glenn Focht Memorial FellowshipNNSA DE-FC52-08NA28512DOE Office of Basic Energy SciencesPhysic
Are there nodes in LaFePO, BaFe(AsP), and KFeAs ?
We reexamined the experimental evidences for the possible existence of the
superconducting (SC) gap nodes in the three most suspected Fe-pnictide SC
compounds: LaFePO, BaFe(AsP), and KFeAs. We
showed that while the -linear temperature dependence of the penetration
depth of these three compounds indicate extremely clean nodal gap
superconductors, the thermal conductivity data unambiguously showed that LaFePO and
BaFe(AsP) are extremely dirty, while KFeAs
can be clean. This apparently conflicting experimental data casts a serious
doubt on the nodal gap possibility on LaFePO and
BaFe(AsP).Comment: 11 pages, 5 figures A new section "4. Remark on the quantum
oscillation (QO) experiments" is adde
Dynamic Fano Resonance of Quasienergy Excitons in Superlattices
The dynamic Fano resonance (DFR) between discrete quasienergy excitons and
sidebands of their ionization continua is predicted and investigated in dc- and
ac-driven semiconductor superlattices. This DFR, well controlled by the ac
field, delocalizes the excitons and opens an intrinsic decay channel in
nonlinear four-wave mixing signals.Comment: 4pages, 4figure
Regular quantum graphs
We introduce the concept of regular quantum graphs and construct connected
quantum graphs with discrete symmetries. The method is based on a decomposition
of the quantum propagator in terms of permutation matrices which control the
way incoming and outgoing channels at vertex scattering processes are
connected. Symmetry properties of the quantum graph as well as its spectral
statistics depend on the particular choice of permutation matrices, also called
connectivity matrices, and can now be easily controlled. The method may find
applications in the study of quantum random walks networks and may also prove
to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure
Direct measurement of a pure spin current by a polarized light beam
The photon helicity may be mapped to a spin-1/2, whereby we put forward an
intrinsic interaction between a polarized light beam as a ``photon spin
current'' and a pure spin current in a semiconductor, which arises from the
spin-orbit coupling in valence bands as a pure relativity effect without
involving the Rashba or the Dresselhaus effect due to inversion asymmetries.
The interaction leads to circular optical birefringence, which is similar to
the Faraday rotation in magneto-optics but nevertheless involve no net
magnetization. The birefringence effect provide a direct, non-demolition
measurement of pure spin currents.Comment: Erratum version to [Physical Review Letter 100, 086603 (2008)
Stability of two-dimensional spatial solitons in nonlocal nonlinear media
We discuss existence and stability of two-dimensional solitons in media with
spatially nonlocal nonlinear response. We show that such systems, which include
thermal nonlinearity and dipolar Bose Einstein condensates, may support a
variety of stationary localized structures - including rotating spatial
solitons. We also demonstrate that the stability of these structures critically
depends on the spatial profile of the nonlocal response function.Comment: 8 pages, 9 figure
Characteristics of the polymer transport in ratchet systems
Molecules with complex internal structure in time-dependent periodic
potentials are studied by using short Rubinstein-Duke model polymers as an
example. We extend our earlier work on transport in stochastically varying
potentials to cover also deterministic potential switching mechanisms,
energetic efficiency and non-uniform charge distributions. We also use currents
in the non-equilibrium steady state to identify the dominating mechanisms that
lead to polymer transportation and analyze the evolution of the macroscopic
state (e.g., total and head-to-head lengths) of the polymers. Several numerical
methods are used to solve the master equations and nonlinear optimization
problems. The dominating transport mechanisms are found via graph optimization
methods. The results show that small changes in the molecule structure and the
environment variables can lead to large increases of the drift. The drift and
the coherence can be amplified by using deterministic flashing potentials and
customized polymer charge distributions. Identifying the dominating transport
mechanism by graph analysis tools is found to give insight in how the molecule
is transported by the ratchet effect.Comment: 35 pages, 17 figures, to appear in Phys. Rev.
Anomalous specific heat jump in the heavy fermion superconductor CeCoIn
We study the anomalously large specific heat jump and its systematic change
with pressure in CeCoIn superconductor. Starting with the general free
energy functional of the superconductor for a coupled electron boson system, we
derived the analytic result of the specific heat jump of the strong coupling
superconductivity occurring in the coupled electron boson system. Then using
the two component spin-fermion model we calculate the specific heat coefficient
both for the normal and superconducting states and show a good
agreement with the experiment of CeCoIn. Our result also clearly
demonstrated that the specific heat coefficient of a coupled electron
boson system can be freely interpreted as a renormalization either of the
electronic or of the bosonic degrees of freedom.Comment: 5 pages, 2 figure
- …