17,551 research outputs found

    Using the chromatic Rossiter-McLaughlin effect to probe the broadband signature in the optical transmission spectrum of HD 189733b

    Get PDF
    Transmission spectroscopy is a powerful technique for probing exoplanetary atmospheres. A successful ground-based observational method uses a differential technique based on high-dispersion spectroscopy, but that only preserves narrow features in transmission spectra. Here we use the chromatic Rossiter-McLaughlin (RM) effect to measure the Rayleigh-scattering slope in the transmission spectrum of HD 189733b with the aim to show that it can be effectively used to measure broadband transmission features. The amplitude of the RM effects depends on the effective size of the planet, and in the case of an atmospheric contribution therefore depends on the observed wavelength. We analysed archival HARPS data of three transits of HD 189733b, covering a wavelength range of 400 to 700 nm. We measured the slope in the transmission spectrum of HD 189733b at a 2.5σ2.5\sigma significance. Assuming it is due to Rayleigh scattering and not caused by stellar activity, it would correspond to an atmospheric temperature, as set by the scale height, of T=2300±900KT = 2300 \pm 900 \mathrm{K}, well in line with previously obtained results. This shows that ground-based high-dispersion spectral observations can be used to probe broad-band features in the transmission spectra of extrasolar planets, by using the chromatic RM effect. This method will be particularly interesting in conjunction with the new echelle spectrograph ESPRESSO, which currently is under construction for ESOs Very Large Telescope and will provide a gain in signal-to-noise ratio of about a factor 4 compared to HARPS. This will be of great value because of the limited and uncertain future of the Hubble Space Telescope and because the future James Webb Space Telescope will not cover this wavelength regime.Comment: 8 pages, 7 figures, accepted for publication on Astronomy and Astrophysic

    Are the reactions γγVV\gamma\gamma\to VV' a challenge for the factorized Pomeron at high energies?

    Full text link
    We would like to point to the strong violation of the putative factorized Pomeron exchange model in the reactions γγVV\gamma\gamma\to VV' in the high-energy region where this model works fairly well in all other cases.Comment: 4 pages, LaTex, 1 fig. in postscript, minor typos corrected, to be published in Phys. Rev. D 60, 117503 (1999

    Solutions to Cosmological Problems with Energy Conservation and Varying c, G and Lambda

    Full text link
    The flatness and cosmological constant problems are solved with varying speed of light c, gravitational coupling strength G and cosmological parameter Lambda, by explicitly assuming energy conservation of observed matter. The present solution to the flatness problem is the same as the previous solution in which energy conservation was absent.Comment: 5 pages, Replaced with LaTex file with minor change

    Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Get PDF
    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel

    The power spectra of CMB and density fluctuations seeded by local cosmic strings

    Get PDF
    We compute the power spectra in the cosmic microwave background and cold dark matter (CDM) fluctuations seeded by strings, using the largest string simulations performed so far to evaluate the two-point functions of their stress energy tensor. We find that local strings differ from global defects in that the scalar components of the stress-energy tensor dominate over vector and tensor components. This result has far reaching consequences. We find that cosmic strings exhibit a single Doppler peak of acceptable height at high \ell. They also seem to have a less severe bias problem than global defects, although the CDM power spectrum in the ``standard'' cosmology (flat geometry, zero cosmological constant, 5% baryonic component) is the wrong shape to fit large scale structure data

    Statistical mechanical description of liquid systems in electric field

    Full text link
    We formulate the statistical mechanical description of liquid systems for both polarizable and polar systems in an electric field in the E\mathbf{E}-ensemble, which is the pendant to the thermodynamic description in terms of the free energy at constant potential. The contribution of the electric field to the configurational integral Q~N(E)\tilde{Q}_{N}(\mathbf{E}) in the E\mathbf{E}-ensemble is given in an exact form as a factor in the integrand of Q~N(E)\tilde{Q}_{N}(\mathbf{E}). We calculate the contribution of the electric field to the Ornstein-Zernike formula for the scattering function in the E\mathbf{E}-ensemble. As an application we determine the field induced shift of the critical temperature for polarizable and polar liquids, and show that the shift is upward for polarizable liquids and downward for polar liquids.Comment: 6 page

    The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b

    Full text link
    For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass-estimate of the star and subsequently of the orbiting planet. In contrast, if also the orbital velocity of the planet would be known, the masses of both star and planet could be determined directly using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report on the detection of the orbital velocity of extrasolar planet HD209458b. High dispersion ground-based spectroscopy during a transit of this planet reveals absorption lines from carbon monoxide produced in the planet atmosphere, which shift significantly in wavelength due to the change in the radial component of the planet orbital velocity. These observations result in a mass determination of the star and planet of 1.00+-0.22 Msun and 0.64+-0.09 Mjup respectively. A ~2 km/sec blueshift of the carbon monoxide signal with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a CO mixing ratio of 1-3x10-3 in this planet's upper atmosphere.Comment: 11 Pages main article and 6 pages suppl. information: A final, edited version appears in the 24 May 2010 issue of Natur

    Towards a precession driven dynamo experiment

    Full text link
    The most ambitious project within the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is the set-up of a precession-driven dynamo experiment. After discussing the scientific background and some results of water pre-experiments and numerical predictions, we focus on the numerous structural and design problems of the machine. We also outline the progress of the building's construction, and the status of some other experiments that are planned in the framework of DRESDYN.Comment: 9 pages, 6 figures, submitted to Magnetohydrodynamic
    corecore