543 research outputs found
The Dynamics of Group Codes: Dual Abelian Group Codes and Systems
Fundamental results concerning the dynamics of abelian group codes
(behaviors) and their duals are developed. Duals of sequence spaces over
locally compact abelian groups may be defined via Pontryagin duality; dual
group codes are orthogonal subgroups of dual sequence spaces. The dual of a
complete code or system is finite, and the dual of a Laurent code or system is
(anti-)Laurent. If C and C^\perp are dual codes, then the state spaces of C act
as the character groups of the state spaces of C^\perp. The controllability
properties of C are the observability properties of C^\perp. In particular, C
is (strongly) controllable if and only if C^\perp is (strongly) observable, and
the controller memory of C is the observer memory of C^\perp. The controller
granules of C act as the character groups of the observer granules of C^\perp.
Examples of minimal observer-form encoder and syndrome-former constructions are
given. Finally, every observer granule of C is an "end-around" controller
granule of C.Comment: 30 pages, 11 figures. To appear in IEEE Trans. Inform. Theory, 200
Concatenated codes Technical report 440
Concatenation method for decoding of complex short code
Structured optical receivers to attain superadditive capacity and the Holevo limit
When classical information is sent over a quantum channel, attaining the
ultimate limit to channel capacity requires the receiver to make joint
measurements over long codeword blocks. For a pure-state channel, we construct
a receiver that can attain the ultimate capacity by applying a single-shot
unitary transformation on the received quantum codeword followed by
simultaneous (but separable) projective measurements on the
single-modulation-symbol state spaces. We study the ultimate limits of
photon-information-efficient communications on a lossy bosonic channel. Based
on our general results for the pure-state quantum channel, we show some of the
first concrete examples of codes and structured joint-detection optical
receivers that can achieve fundamentally higher (superadditive) channel
capacity than conventional receivers that detect each modulation symbol
individually.Comment: 4 pages, 4 figure
Optimal and Efficient Decoding of Concatenated Quantum Block Codes
We consider the problem of optimally decoding a quantum error correction code
-- that is to find the optimal recovery procedure given the outcomes of partial
"check" measurements on the system. In general, this problem is NP-hard.
However, we demonstrate that for concatenated block codes, the optimal decoding
can be efficiently computed using a message passing algorithm. We compare the
performance of the message passing algorithm to that of the widespread
blockwise hard decoding technique. Our Monte Carlo results using the 5 qubit
and Steane's code on a depolarizing channel demonstrate significant advantages
of the message passing algorithms in two respects. 1) Optimal decoding
increases by as much as 94% the error threshold below which the error
correction procedure can be used to reliably send information over a noisy
channel. 2) For noise levels below these thresholds, the probability of error
after optimal decoding is suppressed at a significantly higher rate, leading to
a substantial reduction of the error correction overhead.Comment: Published versio
Reed-Muller codes for random erasures and errors
This paper studies the parameters for which Reed-Muller (RM) codes over
can correct random erasures and random errors with high probability,
and in particular when can they achieve capacity for these two classical
channels. Necessarily, the paper also studies properties of evaluations of
multi-variate polynomials on random sets of inputs.
For erasures, we prove that RM codes achieve capacity both for very high rate
and very low rate regimes. For errors, we prove that RM codes achieve capacity
for very low rate regimes, and for very high rates, we show that they can
uniquely decode at about square root of the number of errors at capacity.
The proofs of these four results are based on different techniques, which we
find interesting in their own right. In particular, we study the following
questions about , the matrix whose rows are truth tables of all
monomials of degree in variables. What is the most (resp. least)
number of random columns in that define a submatrix having full column
rank (resp. full row rank) with high probability? We obtain tight bounds for
very small (resp. very large) degrees , which we use to show that RM codes
achieve capacity for erasures in these regimes.
Our decoding from random errors follows from the following novel reduction.
For every linear code of sufficiently high rate we construct a new code
, also of very high rate, such that for every subset of coordinates, if
can recover from erasures in , then can recover from errors in .
Specializing this to RM codes and using our results for erasures imply our
result on unique decoding of RM codes at high rate.
Finally, two of our capacity achieving results require tight bounds on the
weight distribution of RM codes. We obtain such bounds extending the recent
\cite{KLP} bounds from constant degree to linear degree polynomials
Good Quantum Convolutional Error Correction Codes And Their Decoding Algorithm Exist
Quantum convolutional code was introduced recently as an alternative way to
protect vital quantum information. To complete the analysis of quantum
convolutional code, I report a way to decode certain quantum convolutional
codes based on the classical Viterbi decoding algorithm. This decoding
algorithm is optimal for a memoryless channel. I also report three simple
criteria to test if decoding errors in a quantum convolutional code will
terminate after a finite number of decoding steps whenever the Hilbert space
dimension of each quantum register is a prime power. Finally, I show that
certain quantum convolutional codes are in fact stabilizer codes. And hence,
these quantum stabilizer convolutional codes have fault-tolerant
implementations.Comment: Minor changes, to appear in PR
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Quantum convolutional codes, like their classical counterparts, promise to
offer higher error correction performance than block codes of equivalent
encoding complexity, and are expected to find important applications in
reliable quantum communication where a continuous stream of qubits is
transmitted. Grassl and Roetteler devised an algorithm to encode a quantum
convolutional code with a "pearl-necklace encoder." Despite their theoretical
significance as a neat way of representing quantum convolutional codes, they
are not well-suited to practical realization. In fact, there is no
straightforward way to implement any given pearl-necklace structure. This paper
closes the gap between theoretical representation and practical implementation.
In our previous work, we presented an efficient algorithm for finding a
minimal-memory realization of a pearl-necklace encoder for
Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our
previous work and presents an algorithm for turning a pearl-necklace encoder
for a general (non-CSS) quantum convolutional code into a realizable quantum
convolutional encoder. We show that a minimal-memory realization depends on the
commutativity relations between the gate strings in the pearl-necklace encoder.
We find a realization by means of a weighted graph which details the
non-commutative paths through the pearl-necklace. The weight of the longest
path in this graph is equal to the minimal amount of memory needed to implement
the encoder. The algorithm has a polynomial-time complexity in the number of
gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v
Processing and Transmission of Information
Contains research objectives and reports on three research projects.National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-04)National Aeronautics and Space Administration (Grant NsG-334)National Aeronautics and Space Administration (Grant NsG-496
Quantifying the Performance of Quantum Codes
We study the properties of error correcting codes for noise models in the
presence of asymmetries and/or correlations by means of the entanglement
fidelity and the code entropy. First, we consider a dephasing Markovian memory
channel and characterize the performance of both a repetition code and an error
avoiding code in terms of the entanglement fidelity. We also consider the
concatenation of such codes and show that it is especially advantageous in the
regime of partial correlations. Finally, we characterize the effectiveness of
the codes and their concatenation by means of the code entropy and find, in
particular, that the effort required for recovering such codes decreases when
the error probability decreases and the memory parameter increases. Second, we
consider both symmetric and asymmetric depolarizing noisy quantum memory
channels and perform quantum error correction via the five qubit stabilizer
code. We characterize this code by means of the entanglement fidelity and the
code entropy as function of the asymmetric error probabilities and the degree
of memory. Specifically, we uncover that while the asymmetry in the
depolarizing errors does not affect the entanglement fidelity of the five qubit
code, it becomes a relevant feature when the code entropy is used as a
performance quantifier.Comment: 21 pages, 10 figure
- …