6,613 research outputs found

    The Higgs mechanism for undergraduate students

    Get PDF
    The Higgs mechanism gives mass to particles as a result of the interaction between massless particles and a scalar field. In this version it is reformulated in a purely classical form, using a simple formalism suitable for undergraduate students. The need for the Higgs field is justified with arguments following from a review of the concept of energy and from special relativity. While most of the popularisations of the Higgs mechanism relies on analogies with friction, the proposed explanation appears to be at the same time formally coherent and simple enough to be proposed to undergraduate students, the prerequisites being just the knowledge of the energy density of electric and magnetic fields

    Avalanche photodiodes for the CMS electromagnetic calorimeter

    Get PDF
    Avalanche Photodiodes (APDs) will be used as photodetectors for the CMS crystal barrel calorimeter, made of lead tungstate (PWO) scintillating crystals. After two years of strong R&D effort a significant progress was achieved, in collaboration with manufacturers, in the relevant properties of the device for LHC applications. Quantum efficiency, noise contributions and radiation resistance measurements of APDs are presented

    Performance of the PADME calorimeter prototype at the DAΦ\PhiNE BTF

    Full text link
    The PADME experiment at the DAΦ\PhiNE Beam-Test Facility (BTF) aims at searching for invisible decays of the dark photon by measuring the final state missing mass in the process e+e−→γ+A′e^+e^- \to \gamma+ A', with A′A' undetected. The measurement requires the determination of the 4-momentum of the recoil photon, performed using a homogeneous, highly segmented BGO crystals calorimeter. We report the results of the test of a 5×\times5 crystals prototype performed with an electron beam at the BTF in July 2016

    From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    Full text link
    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure

    Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter

    Full text link
    The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in Italy, will search for invisible decays of the hypothetical dark photon via the process e+e−→γA′e^+e^-\rightarrow \gamma A', where the A′A' escapes detection. The dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We report here on measurement and simulation studies of the performance of the Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting 2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of less than 200 ps, which is satisfied by the choice of PbF2_2 crystals and the newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns) and a single-crystal energy resolution of 5.7%/E\sqrt{E} with light yield of 2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test Facility of LNF. We also propose the investigation of a two-PMT solution coupled to a single PbF2_2 crystal for higher-energy applications, which has potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie

    Response of microchannel plates in ionization mode to single particles and electromagnetic showers

    Full text link
    Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20ps and 30ps are obtained.Comment: 20 pages, 9 figures. Paper submitted to NIM

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Response of microchannel plates to single particles and to electromagnetic showers

    Get PDF
    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.Comment: Paper submitted to NIM

    Detector Construction Management and Quality Control: Establishing and Using a CRISTAL System

    Get PDF
    The CRISTAL (Cooperating Repositories and an Information System for Tracking Assembly Lifecycles) project is delivering a software system to facilitate the management of the engineering data collected at each stage of production of CMS. CRISTAL captures all the physical characteristics of CMS components as each sub-detector is tested and assembled. These data are retained for later use in areas such as detector slow control, calibration and maintenance. CRISTAL must, therefore, support different views onto its data dependent on the role of the user. These data viewpoints are investigated in this paper. In the recent past two CMS Notes have been written about CRISTAL. The first note, CMS 1996/003, detailed the requirements for CRISTAL, its relationship to other CMS software, its objectives and reviewed the technology on which it would be based. CMS 1997/104 explained some important design concepts on which CRISTAL is and showed how CRISTAL integrated the domains of product data man- agement and workflow management. This note explains, through the use of diagrams, how CRISTAL can be established for detector production and used as the information source for analyses, such as calibration and slow controls, carried out by physicists. The reader should consult the earlier CMS Notes and conference papers for technical detail on CRISTAL - this note concentrates on issues surrounding the practical use of the CRISTAL software.Comment: 16 pages, 14 figure
    • …
    corecore