511 research outputs found

    Isoscaling Studies of Fission - a Sensitive Probe into the Dynamics of Scission

    Get PDF
    The fragment yield ratios were investigated in the fission of 238,233U targets induced by 14 MeV neutrons. The isoscaling behavior was typically observed for the isotopic chains of fragments ranging from the proton-rich to the most neutron-rich ones. The observed high sensitivity of neutron-rich heavy fragments to the target neutron content suggests fission as a source of neutron-rich heavy nuclei for present and future rare ion beam facilities, allowing studies of nuclear properties towards the neutron drip-line and investigations of the conditions for nucleosynthesis of heavy nuclei. The breakdowns of the isoscaling behavior around N=62 and N=80 manifest the effect of two shell closures on the dynamics of scission. The shell closure around N=64 can be explained by the deformed shell. The investigation of isoscaling in the spontaneous fission of 248,244Cm further supports such conclusion. The Z-dependence of the isoscaling parameter exhibits a structure which can be possibly related to details of scission dynamics. The fission isoscaling studies can be a suitable tool for the investigation of possible new pathways to synthesize still heavier nuclei.Comment: 7 pages, 3 figures, RevTex, final version, to appear in Phys. Rev. C as a regular articl

    Scaling Laws and Transient Times in 3He Induced Nuclear Fission

    Full text link
    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available at http://csa5.lbl.gov/moretto/ps/he3_paper.p

    From Majorana theory of atomic autoionization to Feshbach resonances in high temperature superconductors

    Full text link
    The Ettore Majorana paper - Theory of incomplete P triplets- published in 1931, focuses on the role of selection rules for the non-radiative decay of two electron excitations in atomic spectra, involving the configuration interaction between discrete and continuum channels. This work is a key step for understanding the 1935 work of Ugo Fano on the asymmetric lineshape of two electron excitations and the 1958 Herman Feshbach paper on the shape resonances in nuclear scattering arising from configuration interaction between many different scattering channels. The Feshbach resonances are today of high scientific interest in many different fields and in particular for ultracold gases and high Tc superconductivity.Comment: 13 pages, 7 figures. Journal of Superconductivity and Novel Magnetism to be publishe

    Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In

    Full text link
    Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and in elastically (Raman) from natural targets of Au, Dy and In.15 new cross sections were measured. Evidence is presented for a slight deformation in the 197Au nucleus, generally believed to be spherical. It is predicted, on the basis of these measurements, that the Giant Dipole Resonance of Dy is very similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in In.Comment: 31 pages, 11 figure

    Climate-induced severe water scarcity events as harbinger of global grain price

    Get PDF
    The severe water scarcity (SWS) concept allows for consistent analysis of the supply and demand for water sourced grain production worldwide. Thus, the primary advantage of using SWS is its ability to simultaneously accommodate the spatial extent and temporal persistence of droughts using climatic data. The SWS concept was extended here to drivers of global grain prices using past SWS events and prices of three dominant grain crops: wheat, rice and maize. A significant relation between the SWS affected area and the prices of wheat was confirmed. The past price–SWS association was then used to project future wheat prices considering likely climate change scenarios until 2050 and expected SWS extent. The projected wheat prices increase with increasing SWS area that is in turn a function of greenhouse gas emissions. The need to act to reduce greenhouse gas emissions is again reinforced assuming the SWS-price relation for wheat is unaltered

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    • 

    corecore