22,302 research outputs found

    Some Issues in a Gauge Model of Unparticles

    Full text link
    We address in a recent gauge model of unparticles the issues that are important for consistency of a gauge theory, i.e., unitarity and Ward identity of physical amplitudes. We find that non-integrable singularities arise in physical quantities like cross section and decay rate from gauge interactions of unparticles. We also show that Ward identity is violated due to the lack of a dispersion relation for charged unparticles although the Ward-Takahashi identity for general Green functions is incorporated in the model. A previous observation that the unparticle's (with scaling dimension d) contribution to the gauge boson self-energy is a factor (2-d) of the particle's has been extended to the Green function of triple gauge bosons. This (2-d) rule may be generally true for any point Green functions of gauge bosons. This implies that the model would be trivial even as one that mimics certain dynamical effects on gauge bosons in which unparticles serve as an interpolating field.Comment: v1:16 pages, 3 figures. v2: some clarifications made and presentation improved, calculation and conclusion not modified; refs added and updated. Version to appear in EPJ

    Deformation of a Trapped Fermi Gas with Unequal Spin Populations

    Full text link
    The real-space densities of a polarized strongly-interacting two-component Fermi gas of 6^6Li atoms reveal two low temperature regimes, both with a fully-paired core. At the lowest temperatures, the unpolarized core deforms with increasing polarization. Sharp boundaries between the core and the excess unpaired atoms are consistent with a phase separation driven by a first-order phase transition. In contrast, at higher temperatures the core does not deform but remains unpolarized up to a critical polarization. The boundaries are not sharp in this case, indicating a partially-polarized shell between the core and the unpaired atoms. The temperature dependence is consistent with a tricritical point in the phase diagram.Comment: Accepted for publication in Physical Review Letter

    Resisting skew-accumulation for time-stepped applications in the cloud via exploiting parallelism

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Time-stepped applications are pervasive in scientific computing domain but perform poorly in the cloud because these applications execute in discrete time-step or tick and use logical synchronization barriers at tick boundaries to ensure correctness. As a result, the accumulated computational skew and communication skew that were unsolved in each tick can slow downtime-stepped applications significantly. However, the existing solutions have focused only on the skew in each tick and thus cannot resist the accumulation of skew. To fill in this gap, an efficient approach to resisting the accumulation of skew is proposed in this paper via fully exploiting parallelism among ticks. This new approach allows the user to decompose much computational part (also called asynchronous part) of the processing for an object, into several asynchronous sub-processes which are dependent on one data object. Each sub-process from different ticks can then proceed in advance using the idle time whenever the needed data object is available, redressing the negative effects caused by accumulated unsolved computational and communication skew. To efficiently support such an approach, a data-centric programming model and also a runtime system, namely AsyTick, coupled with an ad hoc scheduler are developed. Experimental results show that the proposed approach can improve the performance of time-stepped applications over a state-of-the-art computational skew-resistant approach up to 2.53 times.This paper is supported by China National Natural Science Foundation under grant No. 61272408, 61322210, National High-tech Research and Development Program of China (863 Program) under grant No.2012AA010905, CCCPC Youngth Talent Plan, Doctoral Fund of Ministry of Education of China under grant No. 20130142110048

    Spin relaxation in a GaAs quantum dot embedded inside a suspended phonon cavity

    Full text link
    The phonon-induced spin relaxation in a two-dimensional quantum dot embedded inside a semiconductor slab is investigated theoretically. An enhanced relaxation rate is found due to the phonon van Hove singularities. Oppositely, a vanishing deformation potential may also result in a suppression of the spin relaxation rate. For larger quantum dots, the interplay between the spin orbit interaction and Zeeman levels causes the suppression of the relaxation at several points. Furthermore, a crossover from confined to bulk-like systems is obtained by varying the width of the slab.Comment: 5 pages, 4 figures, to apper in Phys. Rev. B (2006

    Metastability in Spin-Polarized Fermi Gases

    Full text link
    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.Comment: 4 pages, 6 figure

    Contact Interactions and Resonance-Like Physics at Present and Future Colliders from Unparticles

    Get PDF
    High scale conformal physics can lead to unusual unparticle stuff at our low energies. In this paper we discuss how the exchange of unparticles between Standard Model fields can lead to new contact interaction physics as well as a pseudoresonance-like structure, an unresonance, that might be observable at the Tevatron or LHC in, e.g., the Drell-Yan channel. The specific signatures of this scenario are quite unique and can be used to easily identify this new physics given sufficient integrated luminosity.Comment: 20 pages, 10 figs; minor text changes, ref added; typos correcte

    Effects of unilateral vs. bilateral resistance training interventions on measures of strength, jump, linear and change of direction speed: a systematic review and meta-analysis

    Get PDF
    Background: Exercises can be categorized into either unilateral or bilateral movements. Despite the topic popularity, the answer to the question as to which (unilateral or bilateral) is superior for a certain athletic performance enhancement remains unclear. Purpose: To compare the effect of unilateral and bilateral resistance training interventions on measures of athletic performance. Methods: Keywords related with unilateral, bilateral and performance were used to search in the Web of Science, Pubmed databases, and Google Scholar and ResearchGate™ websites. Results: 6365 articles were initially identified, 14 met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. The quantitative analysis comprised 392 subjects (aged: 16 to 26 years). Sub-group analysis showed that unilateral exercise resistance training resulted in a large effect in improving unilateral jump performance compared to bilateral training (ES = 0.89 [0.52, 1.26]). In contrast, bilateral exercise resistance training showed a small effect in improving bilateral strength compared to unilateral (ES = -0.43 [-0.71, -0.14]). Non-significant differences were found in improving unilateral strength (ES = 0.26 [-0.03, 0.55]), bilateral jump performance (ES = -0.04 [-0.31, 0.23]), change of direction (COD) (ES = 0.31 [-0.01, 0.63]) and speed (ES = -0.12 [-0.46, 0.21]) performance. Conclusion: Unilateral resistance training exercises should be chosen for improving unilateral jumping performance, and bilateral resistance training exercises should be chosen for improving bilateral strength performance

    Probabilistic Constructive Interference Precoding for Imperfect CSIT

    Get PDF
    This paper proposes a stochastic-robust constructive interference (CI) precoding scheme for downlink multi-user MISO systems, assuming that channel state information (CSI) at the transmitter side (CSIT) is contaminated by Gaussian-distributed uncertainties. Our objective is to minimize the total transmit power under users' quality-of-service constraints: formulating CI at each user with high probabilities for a given target signal-to-noise ratio (SINR). We first analyze the probability of CI under imperfect CSIT. A series of approximations are then developed, transforming the intractable stochastic CI constraints into determined convex constraints. The non-convex stochastic-robust CI power minimization (CIPM) problem is then converted into second-order cone programming. We show that we could create tightened or relaxed approximations by changing the parameters, enabling us to find upper-bounds and lower-bounds for the original stochastic CIPM problem. The best parameter values corresponding to the tightest upper and lower bounds are also discussed and obtained. Simulation results show that the proposed methods reasonably approximate the stochastic CIPM problem. Using the given parameter values, it can guarantee the required probability of CI for each user under acceptable channel uncertainties and outperform the existing robust CI precoding in terms of both transmit power and feasibility rate. The small gap between the upper and lower bounds also shows that the proposed method does not cause too much performance loss
    corecore