19,415 research outputs found
A Search for New Physics with the BEACON Mission
The primary objective of the Beyond Einstein Advanced Coherent Optical
Network (BEACON) mission is a search for new physics beyond general relativity
by measuring the curvature of relativistic space-time around Earth. This
curvature is characterized by the Eddington parameter \gamma -- the most
fundamental relativistic gravity parameter and a direct measure for the
presence of new physical interactions. BEACON will achieve an accuracy of 1 x
10^{-9} in measuring the parameter \gamma, thereby going a factor of 30,000
beyond the present best result involving the Cassini spacecraft. Secondary
mission objectives include: (i) a direct measurement of the "frame-dragging"
and geodetic precessions in the Earth's rotational gravitomagnetic field, to
0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravity's
non-linear effects on light and corresponding 2nd order spatial metric's
effects to 0.01% accuracy. BEACON will lead to robust advances in tests of
fundamental physics -- this mission could discover a violation or extension of
general relativity and/or reveal the presence of an additional long range
interaction in physics. BEACON will provide crucial information to separate
modern scalar-tensor theories of gravity from general relativity, probe
possible ways for gravity quantization, and test modern theories of
cosmological evolution.Comment: 8 pages, 2 figures, 2 table
LATOR Covariance Analysis
We present results from a covariance study for the proposed Laser Astrometric
Test of Relativity (LATOR) mission. This mission would send two
laser-transmitter spacecraft behind the Sun and measure the relative
gravitational light bending of their signals using a hundred-meter-baseline
optical interferometer to be constructed on the International Space Station. We
assume that each spacecraft is equipped with a drag-free system and assume
approximately one year of data. We conclude that the observations allow a
simultaneous determination of the orbit parameters of the spacecraft and of the
Parametrized Post-Newtonian (PPN) parameter with an uncertainty of
. We also find a determination of the
solar quadrupole moment, , as well as the first measurement of the
second-order post-PPN parameter to an accuracy of about .Comment: 9 pages, 3 figures. first revision: minor changes to results. Second
revision: additional discussion of orbit modelling and LATOR drag-free system
requirement feasibility. Added references to tables I and V (which list PPN
parameter uncertainties), removed word from sentence in Section III. 3rd
revision: removed 2 incorrect text fragments (referring to impact parameter
as distance of closest approach) and reference to upcoming publication of
ref. 2, removed spurious gamma from eq. 1 - Last error is still in cqg
published versio
Flicker Noise in Bilayer Graphene Transistors
We present the results of the experimental investigation of the low -
frequency noise in bilayer graphene transistors. The back - gated devices were
fabricated using the electron beam lithography and evaporation. The charge
neutrality point for the fabricated transistors was around 10 V. The noise
spectra at frequencies above 10 - 100 Hz were of the 1/f - type with the
spectral density on the order of 10E-23 - 10E-22 A2/Hz at the frequency of 1
kHz. The deviation from the 1/f spectrum at the frequencies below 10 -100 Hz
indicates that the noise is of the carrier - number fluctuation origin due to
the carrier trapping by defects. The Hooge parameter of 10E-4 was extracted for
this type of devices. The gate dependence of the noise spectral density
suggests that the noise is dominated by the contributions from the ungated part
of the device channel and by the contacts. The obtained results are important
for graphene electronic applications
Low-noise top-gate graphene transistors
We report results of experimental investigation of the low-frequency noise in
the top-gate graphene transistors. The back-gate graphene devices were modified
via addition of the top gate separated by 20 nm of HfO2 from the single-layer
graphene channels. The measurements revealed low flicker noise levels with the
normalized noise spectral density close to 1/f (f is the frequency) and Hooge
parameter below 2 x 10^-3. The analysis of the noise spectral density
dependence on the top and bottom gate biases helped us to elucidate the noise
sources in these devices and develop a strategy for the electronic noise
reduction. The obtained results are important for all proposed graphene
applications in electronics and sensors.Comment: 9 pages, 4 figure
Probing neutrino mass hierarchies and with supernova neutrinos
We investigate the feasibility of probing the neutrino mass hierarchy and the
mixing angle with the neutrino burst from a future supernova. An
inverse power-law density with varying is adopted in the
analysis as the density profile of a typical core-collapse supernova. The
survival probabilities of and are shown to reduce to
two-dimensional functions of and . It is found that in the
parameter space, the 3D plots of the probability
functions exhibit highly non-trivial structures that are sensitive to the mass
hierarchy, the mixing angle , and the value of . The conditions
that lead to observable differences in the 3D plots are established. With the
uncertainty of considered, a qualitative analysis of the Earth matter
effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte
Symplectic Geometry on Quantum Plane
A study of symplectic forms associated with two dimensional quantum planes
and the quantum sphere in a three dimensional orthogonal quantum plane is
provided. The associated Hamiltonian vector fields and Poissonian algebraic
relations are made explicit.Comment: 12 pages, Late
Hadron-quark phase transition in asymmetric matter with dynamical quark masses
The two-Equation of State (EoS) model is used to describe the hadron-quark
phase transition in asymmetric matter formed at high density in heavy-ion
collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL)
effective theory is used to investigate the influence of dynamical quark mass
effects on the phase transition. At variance to the MIT-Bag results, with fixed
current quark masses, the main important effect of the chiral dynamics is the
appearance of an End-Point for the coexistence zone. We show that a first order
hadron-quark phase transition may take place in the region T=(50-80)MeV and
\rho_B=(2-4)\rho_0, which is possible to be probed in the new planned
facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin
properties of the mixed phase somepossible signals are suggested. The
importance of chiral symmetry and dynamical quark mass on the hadron-quark
phase transition is stressed. The difficulty of an exact location of
Critical-End-Point comes from its appearance in a region of competition between
chiral symmetry breaking and confinement, where our knowledge of effective QCD
theories is still rather uncertain.Comment: 13 pages, 16 figures (revtex
Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY
The implementation of fringe tracking for optical interferometers is
inevitable when optimal exploitation of the instrumental capacities is desired.
Fringe tracking allows continuous fringe observation, considerably increasing
the sensitivity of the interferometric system. In addition to the correction of
atmospheric path-length differences, a decent control algorithm should correct
for disturbances introduced by instrumental vibrations, and deal with other
errors propagating in the optical trains. We attempt to construct control
schemes based on Kalman filters. Kalman filtering is an optimal data processing
algorithm for tracking and correcting a system on which observations are
performed. As a direct application, control schemes are designed for GRAVITY, a
future four-telescope near-infrared beam combiner for the Very Large Telescope
Interferometer (VLTI). We base our study on recent work in adaptive-optics
control. The technique is to describe perturbations of fringe phases in terms
of an a priori model. The model allows us to optimize the tracking of fringes,
in that it is adapted to the prevailing perturbations. Since the model is of a
parametric nature, a parameter identification needs to be included. Different
possibilities exist to generalize to the four-telescope fringe tracking that is
useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control
algorithm, a set of two properly working control algorithms for four-telescope
fringe tracking is constructed. The control schemes are designed to take into
account flux problems and low-signal baselines. First simulations of the
fringe-tracking process indicate that the defined schemes meet the requirements
for GRAVITY and allow us to distinguish in performance. In a future paper, we
will compare the performances of classical fringe tracking to our Kalman-filter
control.Comment: 17 pages, 8 figures, accepted for publication in A&
The Effect of Transfer Printing on Pentacene Thin-Film Crystal Structure
The thermal deposition and transfer Printing method had been used to produce
pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP),
respectively. X-ray diffraction patterns of pentacene thin films showed
reflections associated with highly ordered polycrystalline films and a
coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4
and 15.4 A.The dependence of the c-axis correlation length and the phase
fraction on the film thickness and printing temperature were measured. A
transition from the 15.4 A phase towards 14.4 A phase was also observed with
increasing film thickness. An increase in the c-axis correlation length of
approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA
coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si
substrates. The transfer printing method is shown to be an attractive for the
fabrication of pentacene thin-film transistors on flexible substrates partly
because of the resulting improvement in the quality of the pentacene film.Comment: 5 pages, 5 figure
Investigation on dynamic behaviours of liquid and solid phases within non-homogeneous debris flows
The non-homogeneous debris flows, consisting of a wide range of grain size, bulk density and demonstrating non-uniform velocity distributions, are commonly modeled as the two-phase flow. In adopting such an approach, a critical grain diameter to separate the solid and liquid phase, within such debris flows, can be determined through the principles of minimum energy dissipation. In the current study, an improved analytical approach using the resistance formula of water flow and mass conservation law is presented to determine the velocity of the solid and liquid phases within a non-homogeneous debris flow, based on the derived critical grain diameter. Some of the dynamic parameters required in the analysis are validated against the experimental data of a non-homogeneous, two-phase debris flow measured from the Jiangjia gully, Yunnan Province of China. The results show that, for the majority of non-homogeneous debris flows tested, the liquid phase exhibits higher velocity than the solid phase. However, as the bulk density of the debris flow increases, the solid phase tends to have higher velocity than the liquid phase. These findings are shown to have important implications on the vertical grading patterns of the bed deposits in depositional areas. The observations from the field studies indicate that the non-homogeneous debris flows with bulk density being significantly lower, close to and significantly higher than the critical value seem to exhibit normal (i.e. bed-to-surface vertical fining), mixed, and inverse (bed-to-surface vertical coarsening) grading patterns in the alluvial fan deposits
- …