114,509 research outputs found
Achieving Effective Innovation Based On TRIZ Technological Evolution
Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective
Innovation is constrained on the path of technological evolution so that the corresponding path must be
detected before conceptual design of the product. The process of products technological evolution is a
technical developing process that the products approach to Ideal Final Result (IFR). During the process, the
sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential
techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan
Ground-state phases of rung-alternated spin-1/2 Heisenberg ladder
The ground-state phase diagram of Heisenberg spin-1/2 system on a two-leg
ladder with rung alternation is studied by combining analytical approaches with
numerical simulations. For the case of ferromagnetic leg exchanges a unique
ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic
leg exchanges several different ground states are stabilized depending on the
ratio between exchanges along legs and rungs. For the more general case of a
honeycomb-ladder model for the case of ferromagnetic leg exchanges besides
usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic
Luttinger liquid phase with both linear and quadratic low energy dispersions
and ground state magnetization continuously changing with system parameters.
For the case of antiferromagnetic exchanges along legs, different dimerized
states including states with additional topological order are suggested to be
realized
Observing collapse in two colliding dipolar Bose-Einstein condensates
We study the collision of two Bose-Einstein condensates with pure dipolar
interaction. A stationary pure dipolar condensate is known to be stable when
the atom number is below a critical value. However, collapse can occur during
the collision between two condensates due to local density fluctuations even if
the total atom number is only a fraction of the critical value. Using full
three-dimensional numerical simulations, we observe the collapse induced by
local density fluctuations. For the purpose of future experiments, we present
the time dependence of the density distribution, energy per particle and the
maximal density of the condensate. We also discuss the collapse time as a
function of the relative phase between the two condensates.Comment: 6 pages, 7 figure
Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks
While the use of bottom-up local operators in convolutional neural networks
(CNNs) matches well some of the statistics of natural images, it may also
prevent such models from capturing contextual long-range feature interactions.
In this work, we propose a simple, lightweight approach for better context
exploitation in CNNs. We do so by introducing a pair of operators: gather,
which efficiently aggregates feature responses from a large spatial extent, and
excite, which redistributes the pooled information to local features. The
operators are cheap, both in terms of number of added parameters and
computational complexity, and can be integrated directly in existing
architectures to improve their performance. Experiments on several datasets
show that gather-excite can bring benefits comparable to increasing the depth
of a CNN at a fraction of the cost. For example, we find ResNet-50 with
gather-excite operators is able to outperform its 101-layer counterpart on
ImageNet with no additional learnable parameters. We also propose a parametric
gather-excite operator pair which yields further performance gains, relate it
to the recently-introduced Squeeze-and-Excitation Networks, and analyse the
effects of these changes to the CNN feature activation statistics.Comment: NeurIPS 201
c-axis Josephson Tunneling in Twinned YBCO Crystals
Josephson tunneling between YBCO and Pb with the current flowing along the
c-axis of the YBCO is persumed to come from an s-wave component of the
superconductivity of the YBCO. Experiments on multi-twin samples are not
entirely consistent with this hypothesis. The sign change of the s-wave order
parameter across the N_T twin boundaries should give cancelations, resulting in
a small tunneling current. The actual current is larger than this.
We present a theory of this unexpectedly large current based upon a surface
effect: disorder-induced supression of the d-wave component at the (001)
surface leads to s-wave coherence across the twin boundaries and a non-random
tunneling current. We solve the case of an ordered array of d+s and d-s twins,
and estimate that the twin size at which s-wave surface coherence occurs is
consistent with typical sizes observed in experiments. In this picture, there
is a phase difference of between different surfaces of the material. We
propose a corner junction experiment to test this picture.Comment: 5 pages, 4 eps figure
Superlattice barrier varactors
SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented
- …