18,335 research outputs found
3D printing of cement composites
The aims of this study were to investigate the feasibility of generating 3D structures directly in rapid-hardening Portland cement (RHPC) using 3D Printing (3DP) technology. 3DP is a Additive Layer Manufacturing (ALM) process that generates parts directly from CAD in a layer-wise manner. 3D structures were successfully printed using a polyvinylalcohol: RHPC ratio of 3:97 w/w, with print resolutions of better than 1mm. The test components demonstrated the manufacture of features, including off-axis holes, overhangs / undercuts etc that would not be manufacturable using simple mould tools. Samples hardened by 1 day post-build immersion in water at RT offered Modulus of Rupture (MOR) values of up to 0.8±0.1MPa, and, after 26 days immersion in water at RT, offered MOR values of 2.2±0.2MPa, similar to bassanite-based materials more typically used in 3DP (1-3 MPa). Post-curing by water immersion restructured the structure, removing the layering typical of ALM processes, and infilling porosity
Nuclear modification factor in intermediate-energy heavy-ion collisions
The transverse momentum dependent nuclear modification factors (NMF), namely
, is investigated for protons produced in Au + Au at 1 GeV within
the framework of the isospin-dependent quantum molecular dynamics (IQMD) model.
It is found that the radial collective motion during the expansion stage
affects the NMF at low transverse momentum a lot. By fitting the transverse
mass spectra of protons with the distribution function from the Blast-Wave
model, the magnitude of radial flow can be extracted. After removing the
contribution from radial flow, the can be regarded as a thermal one
and is found to keep unitary at transverse momentum lower than 0.6 GeV/c and
enhance at higher transverse momentum, which can be attributed to Cronin
effect.Comment: 8 pages, 5 figures; aceepted by Physics Letters
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop
Evaporating liquid droplets are omnipresent in nature and technology, such as
in inkjet printing, coating, deposition of materials, medical diagnostics,
agriculture, food industry, cosmetics, or spills of liquids. While the
evaporation of pure liquids, liquids with dispersed particles, or even liquid
mixtures has intensively been studied over the last two decades, the
evaporation of ternary mixtures of liquids with different volatilities and
mutual solubilities has not yet been explored. Here we show that the
evaporation of such ternary mixtures can trigger a phase transition and the
nucleation of microdroplets of one of the components of the mixture. As model
system we pick a sessile Ouzo droplet (as known from daily life - a transparent
mixture of water, ethanol, and anise oil) and reveal and theoretically explain
its four life phases: In phase I, the spherical cap-shaped droplet remains
transparent, while the more volatile ethanol is evaporating, preferentially at
the rim of the drop due to the singularity there. This leads to a local ethanol
concentration reduction and correspondingly to oil droplet nucleation there.
This is the beginning of phase II, in which oil microdroplets quickly nucleate
in the whole drop, leading to its milky color which typifies the so-called
'Ouzo-effect'. Once all ethanol has evaporated, the drop, which now has a
characteristic non-spherical-cap shape, has become clear again, with a water
drop sitting on an oil-ring (phase III), finalizing the phase inversion.
Finally, in phase IV, also all water has evaporated, leaving behind a tiny
spherical cap-shaped oil drop.Comment: 40 pages, 12 figure
Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking
The Greek aperitif Ouzo is not only famous for its specific anise-flavored
taste, but also for its ability to turn from a transparent miscible liquid to a
milky-white colored emulsion when water is added. Recently, it has been shown
that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil
microdroplets, can also be triggered by the preferential evaporation of ethanol
in an evaporating sessile Ouzo drop, leading to an amazingly rich drying
process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci.
USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact
line, the nucleation of oil droplets starts at the rim which results in an oil
ring encircling the drop. Furthermore, the oil droplets are advected through
the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate
the evaporation of mixture droplets in more detail, by successively increasing
the mixture complexity from pure water over a binary water-ethanol mixture to
the ternary Ouzo mixture (water, ethanol and anise oil). In particular,
axisymmetric and full three-dimensional finite element method simulations have
been performed on these droplets to discuss thermal effects and the complicated
flow in the droplet driven by an interplay of preferential evaporation,
evaporative cooling and solutal and thermal Marangoni flow. By using image
analysis techniques and micro-PIV measurements, we are able to compare the
numerically predicted volume evolutions and velocity fields with experimental
data. The Ouzo droplet is furthermore investigated by confocal microscopy. It
is shown that the oil ring predominantly emerges due to coalescence
Exact factorization of the time-dependent electron-nuclear wavefunction
We present an exact decomposition of the complete wavefunction for a system
of nuclei and electrons evolving in a time-dependent external potential. We
derive formally exact equations for the nuclear and electronic wavefunctions
that lead to rigorous definitions of a time-dependent potential energy surface
(TDPES) and a time-dependent geometric phase. For the molecular ion
exposed to a laser field, the TDPES proves to be a useful interpretive tool to
identify different mechanisms of dissociation.Comment: 4 pages, 2 figure
Production and Management Simulation of Family Pasture in Different Pastoral Areas Based on OMMLP Model
Family ranch grassland livestock production optimal management model was used to simulate the grassland supply and livestock demand, family economic status under different stocking rates senarion with collection of grassland, livestock, and economics data from Wuzhumuqin Banner and Tongliao as two types of pastoral areas in Inner Mongolia Autonomous Region. The livestock is grazing all year long in Wuzhumuqin Banner, but the livestock is grazing in summer and feeding in hovel in winter in Tongliao, which we call it as semi-farming and semi-pastoral area. The results showed that summer grassland productivity could meet the energy demand of livestock. As the temperature drops in winter and spring, the energy demand of livestock increases, and there is excessive supplementary feeding suff from December to February in the whole pastoral area, and the supplementary feeding amount from January to next January in the semi-agricultural and semi-pastoral areas is not enough to meet the maintenance needs of livestock requirement. The methane emission of herds was more in summer than in winter, and the average methane emission of herds was 3.87 kg/ day and 3.28 kg/ day in the whole grazing area and semi-farming and semi-grazing area, respectively. When the stocking rate of typical households in the whole pastoral area and semi-agricultural and semi-pastoral area was adjusted to 1.34 sheep units/ha and 1.65 sheep units/ha, the corresponding net income was 198,000 RMB and 81,000 RMB, and the net income of pasture was the highest
Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix
We consider a symmetric matrix, the entries of which depend linearly on some
parameters. The domains of the parameters are compact real intervals. We
investigate the problem of checking whether for each (or some) setting of the
parameters, the matrix is positive definite (or positive semidefinite). We
state a characterization in the form of equivalent conditions, and also propose
some computationally cheap sufficient\,/\,necessary conditions. Our results
extend the classical results on positive (semi-)definiteness of interval
matrices. They may be useful for checking convexity or non-convexity in global
optimization methods based on branch and bound framework and using interval
techniques
- …