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The transverse momentum dependent nuclear modification factor (NMF), namely RCP , is investigated
for protons produced in Au + Au at 1A GeV within the framework of the isospin-dependent quantum
molecular dynamics (IQMD) model. It is found that the radial collective motion during the expansion
stage affects the NMF at low transverse momentum a lot. By fitting the transverse mass spectra of protons
with the distribution function from the Blast-Wave model, the magnitude of radial flow can be extracted.
After removing the contribution from radial flow, the RCP can be regarded as a thermal one and is
found to keep unitary at transverse momentum lower than 0.6 GeV/c and enhance at higher transverse
momentum, which can be attributed to the Cronin effect.
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1. Introduction

Recently, the nuclear modification factor (NMF) has been exten-
sively investigated for different particles at various collision ener-
gies in relativistic heavy-ion collisions (HIC) [1–4]. These studies
indicate that the NMF, which can be represented either by the
modification factor between nucleus–nucleus (AA) collisions and
proton–proton (pp) collision RAA or the one between the central
collisions and peripheral collisions RCP , is very useful for the study
of the quantitative properties of the nuclear medium response
when the high speed jet transverses it. In high transverse mo-
mentum (pT ) region, NMF is suppressed owing to jet quenching
effect in hot-dense matter and thus has become one of the ro-
bust evidences on the existence of the Quark-Gluon-Plasma [5,6].
In lower pT region, radial flow boosts or the Cronin Effect [7]
competes with the quenching effect and enhances the NMF, which
has been also demonstrated by the Relativistic Heavy-Ion Collider
(RHIC) beam energy scan (BES) project [8].

Meanwhile, collective motion plays an important role in the
time evolution of particles, which has been studied over a wide
range of collision energy in heavy-ion collision. Around 1A GeV
incident energy in central HIC, the colliding nuclei are expected
to be stopped and lead to densities of 2 ∼ 3ρ0 (ρ0 is the normal
nuclei density) at the largest compression time [9]. At this point,
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a high excitation energy stage is reached and some parts of the ex-
citation energy are converted into collective motion, such as radial
flow [10,11]. Thus, in the following expansion stage, the products
move outward containing both the collective motion and the ther-
mal motion. It will be of interests to decouple these two parts,
because each of them reflects important information of the HIC
process. Efforts have been made by the Blast-Wave model [12–14],
and the collective motion parameter (radial flow velocity) together
with the thermal motion parameter (temperature) can be extracted
at the same time.

Nevertheless, till now, NMF has not been investigated in inter-
mediate energy HIC yet to our knowledge. In particular, the RCP
shape will be strongly affected by the radial flow which plays a sig-
nificant role in the expansion stage especially for the low pT parti-
cles. In order to understand the properties of the nuclear medium
response, one may want to know what the behavior of RCP without
the contribution from radial flow might be. In the present paper,
we address NMF in intermediate energy HIC to study the prop-
erties of nuclear medium for the first time. After removing the
contribution from the radial flow, the NMF can be regarded as a
thermal one, which reflects the property of thermal medium pro-
duced in intermediate energy HIC. The RCP for emitted protons in
Au + Au collision at 1A GeV is investigated systematically.

The article is organized as follows: A brief introduction about
the IQMD model is given in Section 2. In Section 3, we compare
the kinetic energy spectra of light fragments obtained by the IQMD
with the one from the EOS experimental result, then we fit the
proton transverse mass (mT ) spectra with the Boltzmann function
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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and with the distribution function from Blast-Wave model. In Sec-
tion 4, we show the results of NMFs and compare them with
the results extracted from the KaoS experimental data. Finally, the
thermal RCP is recalculated by removing the contribution from ra-
dial flow. Summary and conclusion are presented in Section 5.

2. Brief description of IQMD model

The Quantum Molecular Dynamics model is a transport model
which is based on a many-body theory to describe heavy ion col-
lisions from low (dozens of MeV) to relativistic energy [15–18].
The Isospin dependent Quantum Molecular model (IQMD), was ex-
tended from the QMD model, with considering the isospin effects.
In the past decades, many applications have been successfully per-
formed into nuclear physics studies with the help of IQMD. For
instance, IQMD has been successfully applied to treat collective
flow, multi-fragmentation, isospin effects in HIC, transport coef-
ficient in HIC, giant resonance, and strangeness production, etc.,
[19–23]. In the IQMD model, the wave function of each nucleon
is described as a coherent state with the form of Gaussian wave
packet,

φi(�r, t) = 1

(2π L)3/4
exp

(
− (�r −�ri(t))2

4L

)
exp

(
i�r · �pi(t)

h̄

)
. (1)

Here ri and pi are the time dependent variables which describe
the center of the packet in coordinate and momentum space, re-
spectively. The parameter L, related to the width of wave packet
in coordinate space, is determined by the size of reaction system,
i.e. L = 1.08 fm2 for Ca + Ca system and L = 2.16 fm2 for Au + Au
system in this work. The wave function of the system is the direct
product of all the nucleon wave functions without considering the
Fermion property of nucleon:

Φ(�r, t) =
∏

i

φi(�r, t). (2)

As a compensation, Pauli blocking is employed in the initializa-
tions and collision process to restore some parts of the quantum
property of many-Fermion system.

By applying a generalized variational principle on the action of
the many-body system, one can get the equations of motion for pi
and ri , which are listed as follows

�pi = −∂〈H〉
∂�ri

; �ri = ∂〈H〉
∂ �pi

. (3)

The Hamiltonian 〈H〉 = 〈T 〉+〈V 〉 where T is the kinetic energy,
the potential V is expressed by

〈V 〉 = 1

2

∑
i

∑
j �=i

∫
f i(�r, �p, t)V ij f j

(�r′, �p′, t
)

d�r d�r′ d�p d�p′. (4)

In the above, the Wigner distribution function f i(�r, �p, t), which is
the phase-space density of the ith nucleon, is obtained by applying
the Wigner transformation on the single nucleon wave function:

f i(�r, �p, t) = 1

(π h̄)3
e−(�r−�ri(t))

2 1
2L e

−(�p−�pi(t))
2 2L

(h̄)2 . (5)

The baryon-potential consists of the real part of the G-Matrix
and the Coulomb interaction between the charged particles. The
former one can be divided into three parts, the Skyrme-type in-
teraction, the finite-range Yukawa potential, and the momentum-
dependent interaction (MDI) part. The two-body interaction poten-
tial V ij in Eq. (4) can be expressed as follows:
Table 1
Parameter sets for the nuclear equation of state used in the IQMD model. S and H
represent the soft and hard equation of state, respectively, M refers to the inclusion
of momentum dependent interaction. This table is adapted from [15].

α (MeV) β (MeV) γ δ (MeV) ε ( c2

(GeV)2 )

S −356 303 1.17 – –
SM −319 320 1.14 1.57 500
H −124 71 2.00 – –
HM −130 59 2.09 1.57 500

V ij = Gij + V ij
Coul = V ij

Skyme + V ij
Yuk + V ij

MDI + V ij
Coul

= t1δ(�xi − �x j) + t2δ(�xi − �x j)ρ
γ −1(�xi)

+ t3
exp(−(�xi − �x j)/μ)

(�xi − �x j)/μ

+ t4ln2[1 + t5(�pi − �p j)
2]δ(�xi − �x j)

+ Zi Z je2

�xi − �x j
. (6)

The symmetry potential between protons and neutrons corre-
sponding to the Bethe–Weizsacker mass formula can be taken as

V ij
sym = t6

1

ρ0
T3i T3 jδ(ri − r j) (7)

with t6 = 100 MeV. By integrating Skyrme part as well as the
momentum dependent part of the two-body interaction and in-
troducing the interaction density,

ρi j = 1

(4π L)3/2

∑
j �=i

exp

[
− (�ri −�r j)

2

4L

]
, (8)

one can get the local mean field potential which contains the
Skyrme potential and momentum dependent potential

U = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

+ ρ

ρ0

∫
d�p′g

(�p′)δ ln2[ε(�p − �p′)2 + 1
]
, (9)

where ρ0 is the saturation density at ground state, g(�p, t) =
1

(π h̄)3/2

∑
i e

−(�p−�pi(t))
2 2L

(h̄)2 is the momentum distribution function,

the interaction density ρ = ∑
i j ρi j , and α, β , and γ are the

Skyrme parameters, which connect tightly with the EOS of the bulk
nuclear matter, as listed in Table 1.

With the help of coalescence mechanism, the information of
fragments produced in HICs can be identified in IQMD. A sim-
ple coalescence rule to form a fragment is used with the criteria
�r = 3.5 fm and �p = 300 MeV/c between two considered nucle-
ons.

3. Transverse mass spectra

The Au + Au collisions at 1A GeV are simulated with the IQMD
model for both the soft equation of state with MDI (SM) and the
hard equation of state with MDI (HM). In order to test the reliabil-
ity of the model, the kinetic spectra of proton, deuteron and triton
obtained by the IQMD with the above equation of state situations
are compared with the EOS experimental data in Fig. 1 [12]. The
conditions of the chosen fragments in our model calculations are
b ≤ 3 fm, θcms = 90 ± 15◦ , which are the same as the EOS experi-
mental situation. As shown in Fig. 1, the solid lines are the spectra
extracted from the IQMD with soft and MDI potential, and the dash
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Fig. 1. (Color online.) Ekin spectra of proton (circle), deuteron (square), triton (tri-
angle) in Au + Au at 1A GeV. The solid symbols are the experimental data from
the EOS Collaboration [12], and the solid line is our IQMD simulation with the
soft + MDI potential, and the dash line is for the hard + MDI potential.

Fig. 2. (Color online.) mT spectra of protons at different centralities (0–10%, 10–20%,
20–40%, 40–60%, 60–80%) for Au + Au at 1A GeV from IQMD + SM simulation, the
upper panel is the Boltzmann fit in the range of mT > 0.165 GeV, and the lower
panel is the Blast-Wave fit.

lines are the spectra extracted with HM potential. From Fig. 1, we
find that both the soft and hard equation of state situation can es-
sentially describe the EOS experimental data nicely. A little higher
yield of protons and lower yield of tritons are observed in the
case of the HM potential. The enhanced yield of protons can be
attributed to stronger mean field interaction in HM case compared
to that in SM case.

Transverse mass mT , is given by mT =
√

p2
T + m2

0, with the rest

mass of protons m0. Fig. 2 shows our simulation results for the
double differential transverse mass spectra ( d2 N

2πmT dmT dy ) of protons

at different centralities (0–10%, 10–20%, 20–40%, 40–60%, 60–80%)
together with two fit results either from Boltzmann distribution
Table 2
Fit parameters: slope temperature Tslope from Boltzmann fitting and freeze out tem-
perature T f from Blast-Wave fit.

Cent. Tslope (MeV) T f (MeV)

0–10% 93.06 ± 0.91 61.60 ± 0.81
10–20% 92.67 ± 1.74 62.99 ± 0.98
20–40% 86.55 ± 1.35 64.64 ± 0.89
40–60% 78.50 ± 1.54 64.51 ± 0.76
60–80% 73.87 ± 1.62 60.58 ± 1.05

function or from Blast-Wave model distribution function in the
framework of IQMD model with SM potential. The c.m.s. rapidity
cut is |Y /Yproj| < 0.1 where Yproj is the initial projectile rapidity.
At the end of this section, a discussion will be given for the fit
parameters, i.e. temperature and radial flow.

3.1. The Boltzmann fit

In heavy-ion collisions, particles collide with each other ran-
domly, which can be described in term of thermal motion [24].
Lots of works demonstrate that the Boltzmann distribution can
roughly describe the particle spectra by a thermal source in
HICs [25–28]. If the particles are ejected from a single pure high
temperature thermal source, its transverse mass spectra should
satisfy the Boltzmann distribution function, i.e. dN/(dmT dy) ≈
f (mT ) · exp(−mT /T ), which is close to a straight line when the
y-axis is plotted logarithmically. The results of the mT spectra of
protons fitted with the Boltzmann function are shown in Fig. 2(a).
The proton spectra at different centralities are fitted by the Boltz-
mann function in the region of mT > 0.165 GeV and extrapolated
to the low mT region. It is interesting to find that the spectra in
central collisions have an obvious “shoulder”-like structure in the
low mT region while there is no such structure for peripheral col-
lisions. This means the spectra in central collisions deviate from
the Boltzmann distribution in the low mT region, which can be
essentially attributed to the radial flow in central collisions. The
fit parameters of the slope temperature are listed in the second
column of Table 2. From peripheral to central collision the slope
temperature extracted from the Boltzmann function fit shows a de-
creasing trend, which is very different from that extracted from the
Blast-Wave model fit as discussed in next section.

3.2. The Blast-Wave fit

Considering that the Boltzmann function cannot fit well the mT
spectra in the low mT region due to the existence of collective
radial flow, we adopt a hydrodynamically inspired “Blast-Wave”
model to describe the mT spectra with two free parameters: col-
lective transverse flow velocity β and kinetic freeze-out tempera-
ture T f . In this model, the spectrum is computed by boosting the
thermal source both in longitudinal and transverse direction [10,
29]. The radial velocity distribution βr in the region 0 ≤ βr ≤ R is
described by a self-similar profile, which is parameterized by the
surface velocity βS :

βr = βS ·
(

r

R

)α

, (10)

where R is the freeze-out radius, namely the maximum radius of
the expanding source at thermal freeze-out time. βS is the parti-
cles’ radial velocity on the surface of the freeze out volume when
r = R , and the exponent α represents for the radial flow profile
which describes the evolution of the radial flow velocity (when
α = 0, it means uniform velocity; when α = 1, the expansion is
similar to Hubble’s law; when α = 2, it corresponds to a hydrome-
chanical expansion). The particle spectra are the superposition of
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Table 3
The parameters of radial flow βS , 〈βr〉 and the freeze-out temperature T f at various
centralities with different fitting methods. The upper one is from proton mT spectra
described by the Blast-Wave model. The lower one is from fitting the average kinetic
energy 〈Ekin〉 of p, d, t, which is displayed in Fig. 3.

βS 〈β〉 T f (MeV)

Blast-Wave
0–10% 0.3615 0.3309 ± 0.0028 61.60 ± 0.81

10–20% 0.3199 0.2928 ± 0.0037 62.99 ± 0.98
20–40% 0.2798 0.2561 ± 0.0039 64.64 ± 0.89
40–60% 0.2452 0.2241 ± 0.0039 64.51 ± 0.76
60–80% 0.2355 0.2155 ± 0.0056 60.58 ± 1.05

〈Ekin〉 vs A
0–10% 0.3275 ± 0.0047 82.72 ± 6.97

10–20% 0.2996 ± 0.0057 79.02 ± 6.93
20–40% 0.2946 ± 0.0070 71.12 ± 8.94
40–60% 0.2752 ± 0.0032 67.52 ± 7.69
60–80% 0.2670 ± 0.0036 63.63 ± 5.27

individual thermal source at different r, each boosted with the an-
gle ρ = tanh−1 βr(r):

dn

mT dmT
∝

R∫
0

rdrmT I0

(
pT sinhρ

T f

)
K1

(
mT coshρ

T f

)
, (11)

where K1, I0 are the modified Bessel function, T f is the freeze-out
temperature. The spectrum shape is determined by the freeze-out
temperature T f , the velocity of the transverse expansion βS , the
flow velocity profile α and the mass of the particle m0. The average
flow velocity is estimated by taking an average over the transverse
geometry: 〈βr〉 = βS

2
2+α .

The spectra of protons can be well described by the Blast-Wave
model as shown in Fig. 2(b) and the fit parameters are listed in
Table 3. Obviously, the whole spectra are well fitted, even for the
“shoulder structure” at low mT in central collisions (for the cen-
tralities of 0–10% and 10–20%). From central collisions to periph-
eral ones, the velocity βS decreases and while the temperature has
only a slight increase [30]. It is worth noting that a similar trend
was also seen in the fitting result in RHIC energy region, which
might be owing to non-equilibrium effect in peripheral collision.
For example, by replacing the Boltzmann statistics with the Tsal-
lis statistics in traditional Blast-Wave model, the Tsallis Blast-Wave
model (TBW) can describe the peripheral spectra well and give a
more reasonable fitting result (a low value of βS and (q − 1) > 0
at peripheral collisions) [31].

The main results from the fitting of the mT spectra are follow-
ing:

1. Radial flow (〈βr〉).
In Fig. 2(b), the proton spectra have been described very well

with the Blast-Wave model. The average radial flow is about 0.33c
in the central collisions (0–10%), and reduces to 0.22c in peripheral
collisions (60–80%). This result with a larger radial flow existing in
central collisions is consistent with the physics picture of HICs.

In another scenario, the average kinetic energy 〈Ekin〉 of pro-
tons, deuterons and tritons at mid-rapidity are consistent with
the picture described by the Blast-Wave model. Fig. 3 shows the
mass number dependence of 〈Ekin〉. They have a linear relation-
ship: 〈Ekin〉 = Eth + Eflow = η · A +3T /2 where η = 1/

√
1 − 〈β2

r 〉−1.
The slope is the quantity related to radial flow, and the intercept
is the quantity related to thermal temperature. We can also extract
the radial flow and temperature information by the linear curve
about Ekin vs A, the result is listed in the lower part of Table 3,
which is comparable with the Blast-Wave fit result.

2. Freeze out temperature (T f ).
We use Boltzmann distribution to fit the proton spectra, with

the fitting parameters at different centralities called “slope temper-
Fig. 3. (Color online.) Average Ekin of Z = 1 particle in Au + Au at 1A GeV for differ-
ent centralities (0–10%, 10–20%, 20–40%, 40–60%, 60–80%), the solid line represents
the linear fit on 〈Ekin〉 vs A in each centrality, the fit parameters are displayed in
Table 3.

ature” listed in Table 2. The temperature shows a decreasing trend
from 93.06 MeV in central collisions to 73.87 MeV in peripheral
collisions. Comparing with the Boltzmann fit results, the freeze-out
temperature from the Blast-Wave fit is smaller, and shows a lit-
tle increasing trend. This difference is owing to that the collective
radial flow motion effect has been misunderstood as the thermal
part of motion in the Boltzmann description.

3. Flow profile (α).
The α exponent describes the evolution of the radial flow veloc-

ity from any radius r (0 < r < R). We set the parameter α free in
Blast-Wave fit, which is different from some previous works keep-
ing a fixed value equal to 1 or 2 [29,31,32] or some assuming a
common flow (i.e. α = 0) [11,12,33,34]. The α makes a little dif-
ference to the fitting value of βS while the choice of R value have
no influence on the fitting which chosen R = 40 fm in our work.
We get the α value equal to 0.336 on the spectra of 0–10% central-
ity and fix this value when do the fitting on the other centralities.
A similar value of α has been also obtained in Ref. [35] for Au+Au
collisions in ultra-relativistic energy.

4. Nuclear modification factor

To explore the nuclear medium response, the ratio RCP between
the particle yield in central collisions and the particle yield in pe-
ripheral collisions, has been introduced. Both yields are normalized
by corresponding nucleon–nucleon binary collision numbers 〈Ncoll〉
(binary scaling):

RCP = Yield(central)/〈Nc
coll〉

Yield(peripheral)/〈N p
coll〉

, (12)

where the yield is the differential invariant yield ( d2 N
2π pT dpT dy ). If

the nucleus–nucleus collision is a mere superposition of Ncoll inde-
pendent nucleon–nucleon collisions, RCP would be unity with pT .
Thus any departures from RCP = 1 indicate nuclear medium effects
or other dynamical effects.

4.1. The normal NMF

The normal RCP versus pT is obtained by dividing the pT spec-
tra in central collisions with the ones in peripheral collisions with
taking the respective binary collision number into account. To test
the reliability of model, the results from IQMD calculation are com-
pared with that extracted from KaoS experimental data. Following
the experimental conditions [26], the central collision events are
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Fig. 4. (Color online.) (a) The central and peripheral spectra of protons taken from
the KaoS experimental data [26] are compared with our IQMD simulations with
SM and HM interaction parameters. The character “c” (“p”) represents central (pe-
ripheral) collision, circle (square) represents the KaoS experimental result, solid red
(blue) line represents IQMD with SM interaction and dash red (blue) line IQMD
with HM interaction. Central (circle symbol) and peripheral (square symbol) colli-
sions are selected by the charge particle multiplicity, namely Mz > 50 and Mz ≤ 26.
(b) Experimental RCP (circle) calculating from the KaoS experimental data is com-
pared with IQMD with SM (solid red line) and HM (dash blue line) results. The dash
line (RCP = 1) is just guiding the eyes.

chosen with charged particle multiplicity Mz > 50, and the periph-
eral collision events with Mz < 26. The identified protons are cho-
sen the same as the KaoS experiment, namely, in the polar angle of
40–48 degrees, and the momentum range 0.320–1.440 GeV/c. The
spectra of proton in central and peripheral collisions are showed in
Fig. 4(a), together with the result from IQMD + SM(HM) represent-
ing with different type lines elaborated in figure caption. Results
demonstrate that both the soft and hard EOS can describe the
experimental data nicely. Shown in Fig. 4(b) is the RCP as a func-
tion of total laboratory momentum from IQMD simulation and the
KaoS experiment. Two parameter sets of equation of state, namely
SM and HM, are employed in IQMD calculation. The RCP of pro-
tons from experiment (circle) and from IQMD calculation (solid
red line: SM; dash blue line: HM) increase almost linearly with
the total momentum in laboratory system (plab). This is consistent
with those behaviors from lower RHIC Beam-Energy-Scan energies,
e.g. the RCP for proton in Au + Au at 7.7A GeV [8], and can be
understood by radial boosts and/or the Cronin Effect [7]. The RCP
of proton is not so sensitive to the hard or soft equation of state
in the IQMD calculations, indicating the multiple collision process
dominates here. It’s a need to note that the RCP from model are
arbitrarily scaled to match with the experimental result owing to
the unknown Ncoll in KaoS experiment.

In IQMD model, two particles collide if the minimum relative
distance of their centroids of the Gaussian wave during their mo-
tion, in the CM frame fulfills the requirement:

d ≤ d0 =
√

σtot
, (13)
π

where the cross section σtot is assumed to be the free cross section
of the regarded collision type (N–N , N–�, etc.). In this work, the
collision numbers in every centrality are counted with the “Ncollt”
counter when each collision occurs. For each collision the phase
space densities in the final state are checked in order to assure
that the final distribution in phase space is in agreement with the
Pauli principle, the Pauli blocking number has been counted by
the “Npaubl” counter. Then, we can get the real collision number
(Ncoll = Ncollt − Npaubl). For Au + Au collision at incident energy
1A GeV, the average collision numbers are 242.5, 473, 795.5, 1136,
1463 in five centralities from peripheral to central collisions in our
IQMD model, respectively.

The RCP versus pT shows centrality dependence. In Fig. 5(a),
four cases at different centralities are investigated, which are
0–10%

60–80% (red dot), 10–20%
60–80% (green square), 20–40%

60–80% (blue up triangle)

and 40–60%
60–80% (pink downtriangle). From the most peripheral case in

numerator (i.e. 40–60%
60–80% ) to the most central case in numerator (i.e.

0–10%
60–80% ), the RCP becomes more and more pT dependent. For all
these cases, RCP rises with pT , with a cross point shows up at
pT = 0.5 GeV/c, which may suggest a balance between two mech-
anisms for the pT dependence of RCP .

On the one hand, in the low pT region (pT less than 0.5 GeV/c),
radial flow takes a major role in central collisions, which pushes
protons to higher pT region and results in the smaller RCP at
low pT . On the other hand, in the high pT region (pT greater than
0.5 GeV/c), the Cronin effect (nucleon multiple scattering effect)
[36,37] tends to transform the longitudinal momentum into the
transverse momentum and increase the pT in central HIC, leading
to the larger RCP at high pT .

4.2. The thermal NMF

In order to investigate the thermal property of the medium in
the collision overlapping region, one needs to deduct the contribu-
tion of collective flow to focus on thermal effect. The radial flow
parameter extracted by the Blast-Wave fit has been displayed in
Table 3. By subtracting the radial velocity of each particle, we re-
calculate the RCP of protons without the radial flow contribution.

To determine the magnitude of radial flow, one needs to figure
out the size of freeze-out volume. In the transport model IQMD,
a density criterion is applied here. During the expansion process,
the stage can be chosen as freeze-out stage, when the density
at the center of each collision reaches 1/8ρ0. At this stage, all
the products (including fragments and free nucleons) cease the
strong interaction among them and almost fix their momenta.
For the case of Au + Au collision at Ebeam = 1A GeV, this freeze-
out time is about 60 fm/c, and the corresponding radius Rmax

of freeze-out volume is about 40 fm (half of the reducing edge
of radius distribution of all emitting protons), which is of course
model dependent. Fig. 5(b) shows the NMF of protons inside the
freeze-out volume. In comparison with Fig. 5(a), freeze-out sphere
cuts off most of higher pT protons. Once the freeze-out sphere
is fixed, the radial flow βr for the particles inside the volume
can be calculated through formula in Eq. (10), here α = 0.336 is
taken from the Blast-Wave fit for the pT spectra. The contribu-
tion of radial flow on pT is the projection of radial momentum
(pr = m0 ·βr ·γr ) on the pT vector, and the thermal transverse mo-
mentum is pT = pT − �pr ·�pT

|�pT | . The thermal RCP , is then obtained by
dividing the thermal pT distribution in central collisions to that in
the peripheral collisions with taking the respective binary collision
number into account, which is shown in Fig. 5(c). It is found that
the thermal RCP becomes almost unitary below 0.6 GeV/c, which
illustrates that the original increasing RCP behavior in low pT re-
gion essentially stems from the collective radial flow effect, and
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Fig. 5. (Color online.) Nuclear modification factor, RCP of protons in Au + Au at
1A GeV. The panel (a) is the original RCP , the panel (b) is the RCP inside the freeze-
out sphere, and the panel (c) shows the RCP (b) after deducting the radial flow
effect from the panel (b), which is named as the thermal RCP . The dot line (RCP = 1)
is just guiding the eyes.

the thermal motion of nucleus–nucleus collision can be seen as
the independent overlap of nucleon–nucleon collisions. It is also
noted that the thermal RCP is larger than 1 at pT above 0.6 GeV/c,
where the Cronin effect plays a dominant role for the RCP increas-
ing behavior versus pT [7,36].

5. Conclusion

In summary, the nuclear modification factor has been intro-
duced in intermediate energy HIC in the framework of transport
model, and thermal NMF has been proposed. First, we test the reli-
ability of the IQMD model by comparing the kinetic energy spectra
of light fragments (p, d, t) obtained by the IQMD model with the
EOS experimental data, and we found the model can describe the
data nicely. Secondly, the transverse mass spectra of protons are
fitted by the Boltzmann distribution function as well as the distri-
bution function from Blast-Wave model. It is found that the latter
gives a satisfying description of the transverse mass mT spectra
of protons at freeze-out time, which demonstrates that the ki-
netic energy of protons contains the collective radial motion part
and random thermal motion part. The fitting radial flow parameter
βS and temperature parameter T f are consistent with the results
from the EOS Collaboration [12] and the FOPI Collaboration [13,14].
While, the Boltzmann description overestimates the proton yield
at low mT , because of the missing radial flow contribution. Thus
the fit temperature from the Boltzmann description can be inter-
preted as the apparent temperature of the emission source, which
decreases from the central collisions to the peripheral collisions. It
is found that both the radial flow effect and Cronin effect play their
corresponding roles in shaping the pT dependence of RCP . The ra-
dial flow magnitude can be extracted by fitting the mT spectra
with the distribution function from Blast-Wave model. The thermal
modification factor is then obtained by removing the contribution
from the radial flow. It is found that the thermal RCP of protons is
close to 1 at lower pT , where protons emitted from Au + Au col-
lisions can be regarded as independent superposition of emitted
protons by nucleon–nucleon collisions, and while RCP enhances at
higher pT , where the Cronin effect, i.e. multiple production mech-
anism of protons plays an increasing role. On the other hand, in
light of this study, the nuclear modification factor at very high pT
which has been often used to investigate jet-quenching effect at
RHIC and LHC energies was actually nearly not affected by the col-
lective radial flow.

Acknowledgements

This work was supported in part by the Major State Ba-
sic Research Development Program in China under Contract No.
2014CB845401, the National Natural Science Foundation of China
under Contract Nos. 11035009 and 11220101005, the Knowledge
Innovation Project of Chinese Academy of Sciences under Grant
No. KJCX2-EW-N01.

References

[1] I. Arsene, et al., Phys. Lett. B 650 (2007) 219.
[2] The ALICE Collaboration, arXiv:1210.4520v1 [nucl-ex], 16 Oct 2012.
[3] K. Adcox, et al., Phys. Rev. Lett. 88 (2001) 022301.
[4] S.S. Adler, et al., Phenix Collaboration, Phys. Rev. Lett. 91 (2003) 172301.
[5] I. Arsene, et al., Nucl. Phys. A 757 (2005) 1;

B.B. Back, et al., PHOBOS Collaboration, Nucl. Phys. A 757 (2005) 28;
J. Adams, et al., STAR Collaboration, Nucl. Phys. A 757 (2005) 102;
K. Adcox, et al., PHENIX Collaboration, Nucl. Phys. A 757 (2005) 184.

[6] J.D. Bjorken, FERMILAB-PUB-82-59-THY, and Erratum (unpublished);
X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 68 (1992) 1480;
E. Wang, X.N. Wang, Phys. Rev. Lett. 87 (2001) 142301;
G.L. Ma, Y.G. Ma, S. Zhang, et al., Phys. Lett. B 647 (2007) 122.

[7] J.W. Cronin, et al., Phys. Rev. Lett. 31 (1973) 1426;
J.W. Cronin, et al., Phys. Rev. D 11 (1975) 3105.

[8] S.P. Horvat, et al., STAR Collaboration, J. Phys. Conf. Ser. 446 (2013) 012017.
[9] H. Oeschler, Hadrons in Dense Matter and Hadrosynthesis, Lect. Notes Phys.,

vol. 516, 1999, pp. 1–20.
[10] P.J. Siemens, J.O. Rasmussen, Phys. Rev. Lett. 42 (1979) 880.
[11] G. Poggi, et al., Nucl. Phys. A 586 (1995) 755.
[12] M.A. Lisa, et al., Phys. Rev. Lett. 75 (1995) 2662.
[13] B. Hong, et al., FOPI Collaboration, Phys. Rev. C 58 (1998) 603.
[14] W. Reisdorf, et al., FOPI Collaboration, Nucl. Phys. A 848 (2010) 366.
[15] C. Hartnack, et al., Eur. Phys. J. A 1 (1998) 151.
[16] J. Aichelin, Phys. Rep. 202 (1991) 233.
[17] J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, W. Greiner, Phys. Rev. Lett. 58

(1987) 1926.
[18] C. Hartnack, et al., Nucl. Phys. A 495 (1989) 303c.
[19] C. Hartnack, H. Oeschler, Y. Leifels, E.L. Bratkovskaya, J. Aichelin, Phys. Rep. 510

(2012) 119.
[20] C.L. Zhou, et al., Phys. Rev. C 88 (2013) 024604.
[21] S. Kumar, Y.G. Ma, Phys. Rev. C 86 (2012) 051601(R).
[22] J. Wang, et al., Nucl. Sci. Tech. 24 (2013) 030501;

C. Tao, et al., Nucl. Sci. Tech. 24 (2013) 030501.
[23] W.J. Xie, F.S. Zhang, Nucl. Sci. Tech. 24 (2013) 050502;

W.Z. Jiang, Nucl. Sci. Tech. 24 (2013) 050507;
C.W. Ma, et al., Nucl. Sci. Tech. 24 (2013) 050510.

[24] E. Fermi, Prog. Theor. Phys. 5 (1950) 570.
[25] A. Kelic, J.B. Natowitz, K.-H. Schmidt, Eur. Phys. J. A 30 (2006) 203.

http://refhub.elsevier.com/S0370-2693(14)00257-3/bib524849435F4E4D4631s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib524849435F4E4D4632s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib524849435F4E4D4633s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib524849435F4E4D4634s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib57686974655061706572s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib57686974655061706572s2
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib57686974655061706572s3
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib57686974655061706572s4
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4A657432s2
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4A657432s3
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4A657432s4
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib43726F6E696E4531s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib43726F6E696E4531s2
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib486F727661745F424553s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib48494373s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib48494373s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib5369656D656E73s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib666C6F775F65766932s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4C6973615F72666C6F77s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib464F50495F72666C6F7731s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib464F50495F72666C6F7732s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib486172746E61636B5F49514D44s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib41726368656C696E5F514D44s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib41726368656C696E5F4D44514D44s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib41726368656C696E5F4D44514D44s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib486172746E61636B5F514D44s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib52657631s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib52657631s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib5A686F75s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4B756D6172s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4E5354s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4E5354s2
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4E535432s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4E535432s2
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4E535432s3
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4665726D69s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib746865726D6F6D65747279s1


M. Lv et al. / Physics Letters B 733 (2014) 105–111 111
[26] C. Müntz, et al., Z. Phys. A 352 (1995) 175.
[27] G.D. Westfall, et al., Phys. Lett. B 116 (1982) 118.
[28] B.V. Jacak, et al., Phys. Rev. Lett. 51 (1983) 1846.
[29] E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48 (1993) 2462.
[30] B.I. Abelev, et al., STAR Collaboration, Phys. Rev. C 79 (2009) 034909.
[31] Z.B. Tang, et al., Phys. Rev. C 79 (2009) 051901(R).
[32] P. Braun-Munzinger, et al., Phys. Lett. B 344 (1995) 43.
[33] C. Hartnack, J. Aichelin, Phys. Lett. B 506 (2001) 261.
[34] F. Fu, et al., Phys. Lett. B 666 (2008) 359.
[35] O. Ristea, et al., J. Phys. Conf. Ser. 420 (2013) 012041.
[36] D. Antreasyan, et al., Phys. Rev. D 19 (1979) 764.
[37] A.H. Rezaeian, Zhun Lu, Nucl. Phys. A 826 (2009) 198.

http://refhub.elsevier.com/S0370-2693(14)00257-3/bib434D756E747As1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib736C6F70655432s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib736C6F70655433s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib42575F45536368s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib42575F42494162s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib42575F54616E67s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4147535F72666C6F7733s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib486172746E61636B5F72666C6F7734s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib4675465F72666C6F7735s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib42575F4F616E61s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib43726F6E696E4532s1
http://refhub.elsevier.com/S0370-2693(14)00257-3/bib43726F6E696E4533s1

	Nuclear modiﬁcation factor in intermediate-energy heavy-ion collisions
	1 Introduction
	2 Brief description of IQMD model
	3 Transverse mass spectra
	3.1 The Boltzmann ﬁt
	3.2 The Blast-Wave ﬁt

	4 Nuclear modiﬁcation factor
	4.1 The normal NMF
	4.2 The thermal NMF

	5 Conclusion
	Acknowledgements
	References


