250,271 research outputs found
Modelling Time-varying Dark Energy with Constraints from Latest Observations
We introduce a set of two-parameter models for the dark energy equation of
state (EOS) to investigate time-varying dark energy. The models are
classified into two types according to their boundary behaviors at the redshift
and their local extremum properties. A joint analysis based on
four observations (SNe + BAO + CMB + ) is carried out to constrain all the
models. It is shown that all models get almost the same and the cosmological parameters with the
best-fit results , although the constraint results on two
parameters and the allowed regions for the EOS are
sensitive to different models and a given extra model parameter. For three of
Type I models which have similar functional behaviors with the so-called CPL
model, the constrained two parameters and have negative correlation
and are compatible with the ones in CPL model, and the allowed regions of
get a narrow node at . The best-fit results from the most
stringent constraints in Model Ia give which may compare with the best-fit results in the CPL model. For four of
Type II models which have logarithmic function forms and an extremum point, the
allowed regions of are found to be sensitive to different models and a
given extra parameter. It is interesting to obtain two models in which two
parameters and are strongly correlative and appropriately reduced
to one parameter by a linear relation .Comment: 30 pages, 7 figure
Primitive Cohomology of Hopf algebras
Primitive cohomology of a Hopf algebra is defined by using a modification of
the cobar construction of the underlying coalgebra. Among many of its
applications, two classifications are presented. Firstly we classify all non
locally PI, pointed Hopf algebra domains of Gelfand-Kirillov dimension two; and
secondly we classify all pointed Hopf algebras of rank one. The first
classification extends some results of Brown, Goodearl and others in an ongoing
project to understand all Hopf algebras of low Gelfand-Kirillov dimension. The
second generalizes results of Krop-Radford and Wang-You-Chen which classified
Hopf algebras of rank one under extra hypothesis. Properties and algebraic
structures of the primitive cohomology are discussed
On cost-effective communication network designing
How to efficiently design a communication network is a paramount task for
network designing and engineering. It is, however, not a single objective
optimization process as perceived by most previous researches, i.e., to
maximize its transmission capacity, but a multi-objective optimization process,
with lowering its cost to be another important objective. These two objectives
are often contradictive in that optimizing one objective may deteriorate the
other. After a deep investigation of the impact that network topology, node
capability scheme and routing algorithm as well as their interplays have on the
two objectives, this letter presents a systematic approach to achieve a
cost-effective design by carefully choosing the three designing aspects. Only
when routing algorithm and node capability scheme are elegantly chosen can
BA-like scale-free networks have the potential of achieving good tradeoff
between the two objectives. Random networks, on the other hand, have the
built-in character for a cost-effective design, especially when other aspects
cannot be determined beforehand.Comment: 6 pages, 4 figure
Einstein's Theory of Gravity and the Problem of Missing Mass
The observed matter in the universe accounts for just 5 percent of the
observed gravity. A possible explanation is that Newton's and Einstein's
theories of gravity fail where gravity is either weak or enhanced. The modified
theory of Newtonian dynamics (MOND) reproduces, without dark matter,
spiral-galaxy orbital motions and the relation between luminosity and rotation
in galaxies, although not in clusters. Recent extensions of Einstein's theory
are theoretically more complete. They inevitably include dark fields that seed
structure growth, and they may explain recent weak lensing data. However, the
presence of dark fields reduces calculability and comes at the expense of the
original MOND premise -- that the matter we see is the sole source of gravity.
Observational tests of the relic radiation, weak lensing, and the growth of
structure may distinguish modified gravity from dark matter.Comment: 11 pages, 3 figures. As published (with corrected typos in caption of
Figure 1 and address of one author). Figures much better in published versio
Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors
We report a buried heterostructure vertical-cavity surface-emitting laser
fabricated by epitaxial regrowth over an InGaAs quantum well gain medium. The
regrowth technique enables microscale lateral confinement that preserves a high
cavity quality factor (loaded 4000) and eliminates parasitic
charging effects found in existing approaches. Under optimal spectral overlap
between gain medium and cavity mode (achieved here at = 40 K) lasing was
obtained with an incident optical power as low as = 10 mW
( = 808 nm). The laser linewidth was found to be 3
GHz at 5
Interacting Individuals Leading to Zipf's Law
We present a general approach to explain the Zipf's law of city distribution.
If the simplest interaction (pairwise) is assumed, individuals tend to form
cities in agreement with the well-known statisticsComment: 4 pages 2 figure
MgB2 tunnel junctions and 19 K low-noise dc superconducting quantum interference devices
Point contact junctions made from two pieces of MgB2 can be adjusted to
exhibit either superconductor-insulator-superconductor (SIS) or
superconductor-normal metal-superconductor (SNS) current-voltage
characteristics. The SIS characteristics are in good agreement with the
standard tunneling model for s-wave superconductors, and yield an energy gap of
(2.02 +/- 0.08) meV. The SNS characteristics are in good agreement with the
predictions of the resistively-shunted junction model. DC Superconducting
QUantum Interference Devices made from two SNS junctions yield magnetic field
noise as low as 35 fT/Hz^{1/2} at 19 K.Comment: 4 pages, 4 figure
- …