61,012 research outputs found

    Probing many-body localization in a disordered quantum magnet

    Get PDF
    Quantum states cohere and interfere. Quantum systems composed of many atoms arranged imperfectly rarely display these properties. Here we demonstrate an exception in a disordered quantum magnet that divides itself into nearly isolated subsystems. We probe these coherent clusters of spins by driving the system beyond its linear response regime at a single frequency and measuring the resulting "hole" in the overall linear spectral response. The Fano shape of the hole encodes the incoherent lifetime as well as coherent mixing of the localized excitations. For the disordered Ising magnet, LiHo0.045Y0.955F4\mathrm{LiHo_{0.045}Y_{0.955}F_4}, the quality factor QQ for spectral holes can be as high as 100,000. We tune the dynamics of the quantum degrees of freedom by sweeping the Fano mixing parameter qq through zero via the amplitude of the ac pump as well as a static external transverse field. The zero-crossing of qq is associated with a dissipationless response at the drive frequency, implying that the off-diagonal matrix element for the two-level system also undergoes a zero-crossing. The identification of localized two-level systems in a dense and disordered dipolar-coupled spin system represents a solid state implementation of many-body localization, pushing the search forward for qubits emerging from strongly-interacting, disordered, many-body systems.Comment: 22 pages, 6 figure

    Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    Get PDF
    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences

    The Use of Gamma-ray Bursts as Direction and Time Markers in SETI Strategies

    Get PDF
    When transmitting a signal over a large distance it is more efficient to send a brief beamed signal than a continuous omni-directional transmission but this requires that the receiver knows where and when to look for the transmission. For SETI, the use of various natural phenomena has previously been suggested to achieve the desired synchronization. Here it is proposed that gamma-ray bursts may well the best ``synchronizers'' of all currently known phenomena due to their large intrinsic luminosities, high occurrence rate, isotropic sky distribution, large distance from the Galaxy, short duration, and easy detectability. For targeted searches, precise positions for gamma-ray bursts are required together with precise distance measurements to a target star. The required burst position determinations are now starting to be obtained, aided in large part by the discovery of optical afterglows. Good distance measurements are currently available from Hipparcos and even better measurements should be provided by spacecraft now being developed. For non-targeted searches, positional accuracies simply better than a detector's field of view may suffice but the time delay between the detection of a gamma-ray burst and the reception of the transmitted signal cannot be predicted in an obvious way.Comment: 8 pages, accepted for publication in PAS

    Influence of the temperature on the depinning transition of driven interfaces

    Full text link
    We study the dynamics of a driven interface in a two-dimensional random-field Ising model close to the depinning transition at small but finite temperatures T using Glauber dynamics. A square lattice is considered with an interface initially in (11)-direction. The drift velocity v is analyzed for the first time using finite size scaling at T = 0 and additionally finite temperature scaling close to the depinning transition. In both cases a perfect data collapse is obtained from which we deduce beta = 1/3 for the exponent which determines the dependence of v on the driving field, nu = 1 for the exponent of the correlation length and delta = 5 for the exponent which determines the dependence of v on T.Comment: 5 pages, Latex, Figures included, to appear in Europhys. Let

    Charge Gaps at Fractional Fillings in Boson Hubbard Ladders

    Full text link
    The Bose-Hubbard Hamiltonian describes the competition between superfluidity and Mott insulating behavior at zero temperature and commensurate filling as the strength of the on-site repulsion is varied. Gapped insulating phases also occur at non-integer densities as a consequence of longer ranged repulsive interactions. In this paper we explore the formation of gapped phases in coupled chains due instead to anisotropies txtyt_x \neq t_y in the bosonic hopping, extending the work of Crepin {\it et al.} [Phys. Rev. B 84, 054517 (2011)] on two coupled chains, where a gap was shown to occur at half filling for arbitrarily small interchain hopping tyt_y. Our main result is that, unlike the two-leg chains, for three- and four-leg chains, a charge gap requires a finite nonzero critical tyt_y to open. However, these finite values are surprisingly small, well below the analogous values required for a fermionic band gap to open.Comment: 8 pages, 15 figure

    Progress with PXIE MEBT Chopper

    Get PDF
    A capability to provide a large variety of bunch patterns is crucial for the concept of the Project X serving MW-range beam to several experiments simultaneously. This capability will be realized by the Medium Energy Beam Transport's (MEBT) chopping system that will divert 80% of all bunches of the initially 5mA, 2.1 MeV CW 162.5 MHz beam to an absorber according to a pre-programmed bunch-by-bunch selection. Being considered one of the most challenging components, the chopping system will be tested at the Project X Injector Experiment (PXIE) facility that will be built at Fermilab as a prototype of the Project X front end. The bunch deflection will be made by two identical sets of travelling-wave kickers working in sync. Currently, two versions of the kickers are being investigated: a helical 200 Ohm structure with a switching-type 500 V driver and a planar 50 Ohm structure with a linear 250 V amplifier. This paper will describe the chopping system scheme and functional specifications for the kickers, present results of electromagnetic measurements of the models, discuss possible driver schemes, and show a conceptual mechanical design.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012. New Orleans, Louisian
    corecore