39,949 research outputs found

    Real photons produced from photoproduction in pppp collisions

    Full text link
    We calculate the production of real photons originating from the photoproduction in relativistic pppp collisions. The Weizsa¨\ddot{\mathrm{a}}cker-Williams approximation in the photoproduction is considered. Numerical results agree with the experimental data from Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). We find that the modification of the photoproduction is more prominent in large transverse momentum region.Comment: 2 figure

    Magnetic-Field Tuning of Light-Induced Superconductivity in Striped La2−x_{2-x}Bax_xCuO4_4

    Full text link
    Optical excitation of stripe-ordered La2−x_{2-x}Bax_xCuO4_4 has been shown to transiently enhance superconducting tunneling between the CuO2_2 planes. This effect was revealed by a blue-shift, or by the appearance of a Josephson Plasma Resonance in the terahertz-frequency optical properties. Here, we show that this photo-induced state can be strengthened by the application of high external magnetic fields oriented along the c-axis. For a 7-Tesla field, we observe up to a ten-fold enhancement in the transient interlayer phase correlation length, accompanied by a two-fold increase in the relaxation time of the photo-induced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically-enhanced interlayer coupling in La2−x_{2-x}Bax_xCuO4_4 does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photo-induced state may emerge from activated tunneling between optically-excited stripes in adjacent planes.Comment: 35 pages, 13 figure

    Singularity in the boundary resistance between superfluid 4^4He and a solid surface

    Full text link
    We report new measurements in four cells of the thermal boundary resistance RR between copper and 4^4He below but near the superfluid-transition temperature TλT_\lambda. For 10−7≤t≡1−T/Tλ≤10−410^{-7} \leq t \equiv 1 - T/T_\lambda \leq 10^{-4} fits of R=R0txb+B0R = R_0 t^{x_b} + B_0 to the data yielded xb≃0.18x_b \simeq 0.18, whereas a fit to theoretical values based on the renormalization-group theory yielded xb=0.23x_b = 0.23. Alternatively, a good fit of the theory to the data could be obtained if the {\it amplitude} of the prediction was reduced by a factor close to two. The results raise the question whether the boundary conditions used in the theory should be modified.Comment: 4 pages, 4 figures, revte

    Phase properties of hypergeometric states and negative hypergeometric states

    Get PDF
    We show that the three quantum states (PoËŠ\acute{o}lya states, the generalized non-classical states related to Hahn polynomials and negative hypergeometric states) introduced recently as intermediates states which interpolate between the binomial states and negative binomial states are essentially identical. By using the Hermitial-phase-operator formalism, the phase properties of the hypergeometric states and negative hypergeometric states are studied in detail. We find that the number of peaks of phase probability distribution is one for the hypergeometric states and MM for the negative hypergeometric states.Comment: 7 pages, 4 figure

    X-ray Properties of Radio-Selected Dual Active Galactic Nuclei

    Get PDF
    Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between 0.04<z<0.220.04 < z < 0.22 and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present ChandraChandra X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical Journa
    • …
    corecore