38,725 research outputs found
Aerosol particle molecular spectroscopy
The molecular spectroscopy of a solution particle by structure resonance modulation spectroscopy is discussed [S. Arnold and A. B. Pluchino, "Infrared Spectrum of a Single Aerosol Particle by Photothermal Modulation of Structure Resonances," Appl. Opt. 21, 4194 (1982); S. Arnold et al., "Molecular Spectroscopy of a Single Aerosol Particle," Opt. Lett. 9, 4 (1984)]. Analytical equations are derived for time dependence of the particle radius as it interacts with a low intensity IR source (<20 mW/cm^2). This formalism is found to be in good agreement with pulsed experiments. Working equations for the spectroscopy are derived for both constant and periodic IR excitation
Amenability and co-amenability of algebraic quantum groups
We define concepts of amenability and co-amenability for algebraic quantum
groups in the sense of A. Van Daele. We show that co-amenability of an
algebraic quantum group always implies amenability of its dual. Various
necessary and/or sufficient conditions for amenability or co-amenability are
obtained. Co-amenability is shown to have interesting consequences for the
modular theory in the case that the algebraic quantum group is of compact type.Comment: 25 pages, with some minor corrections, as to appear in the IJMM
Instabilities of geared couplings: Theory and practice
The use of couplings for high speed turbocompressors or pumps is essential to transmit power from the driver. Typical couplings are either of the lubricated gear or dry diaphragm type design. Gear couplings have been the standard design for many years and recent advances in power and speed requirements have pushed the standard design criteria to the limit. Recent test stand and field data on continuous lube gear type couplings have forced a closer examination of design tolerances and concepts to avoid operational instabilities. Two types of mechanical instabilities are reviewed in this paper: (1) entrapped fluid, and (2) gear mesh instability resulting in spacer throw-out onset. Test stand results of these types of instabilities and other directly related problems are presented together with criteria for proper coupling design to avoid these conditions. An additional test case discussed shows the importance of proper material selection and processing and what can happen to an otherwise good design
Numerical solutions of the one-dimensional nucleon-meson cascade equations
Numerical integration of meson-nucleon cascade equations for accelerator shielding calculation
A Program for the Collection, Storage, and Analysis of Baseline Environmental Data for Cook Inlet, Alaska
The scope of this report is to provide a general, yet comprehensive,
description of the Cook Inlet System which will serve as a
basis for understanding the interrelated natural and man-made factors
governing its future; to present a program of field research studies
for the estuarine environment that will describe the existing state of
the Inlet with respect to the water quality and biota; to provide a
framework whereby the program of studies can be evaluated and redirected
in light of the preliminary results; and, to provide a method of storing
and analyzing the data from the investigations so that it can be made
available to interested parties in the most efficient manner possible.This report was prepared by the Institute of Water Resources of the
University of Alaska for the Alaska Water Laboratory, Federal Water
Pollution Control Administration under Contract No. 14-12-449
The Local Radio-IR Relation in M51
We observed M51 at three frequencies, 1.4 GHz (20 cm), 4.9 GHz (6 cm), and 8.4 GHz (3.6 cm), with the Very Large Array and the Effelsberg 100 m telescope to obtain the highest quality radio continuum images of a nearby spiral galaxy. These radio data were combined with deconvolved Spitzer IRAC 8 μm and MIPS 24 μm images to search for and investigate local changes in the radio-IR correlation. Utilizing wavelet decomposition, we compare the distribution of the radio and IR emission on spatial scales between 200 pc and 30 kpc. We show that the radio-IR correlation is not uniform across the galactic disk. It presents a complex behavior with local extrema corresponding to various galactic structures, such as complexes of H II regions, spiral arms, and interarm filaments, indicating that the contribution of the thermal and non-thermal radio emission is a strong function of environment. In particular, the relation of the 24 μm and 20 cm emission presents a linear relation within the spiral arms and globally over the galaxy, while it deviates from linearity in the interarm and outer regions as well in the inner region, with two different behaviors: it is sublinear in the interarm and outer region and overlinear in the central 3.5 kpc. Our analysis suggests that the changes in the radio/IR correlation reflect variations of interstellar medium properties between spiral arms and interarm region. The good correlation in the spiral arms implies that 24 μm and 20 cm are tracing recent star formation, while a change in the dust opacity, "Cirrus" contribution to the IR emission and/or the relation between the magnetic field strength and the gas density can explain the different relations found in the interarm, outer, and inner regions
Particle-in-cell simulation of a mildly relativistic collision of an electron-ion plasma carrying a quasi-parallel magnetic field: Electron acceleration and magnetic field amplification at supernova shocks
Plasma processes close to SNR shocks result in the amplification of magnetic
fields and in the acceleration of electrons, injecting them into the diffusive
acceleration mechanism. The acceleration of electrons and the B field
amplification by the collision of two plasma clouds, each consisting of
electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel
guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of
25 keV are considered. A quasi-planar shock forms at the front of the dense
plasma cloud. It is mediated by a circularly left-hand polarized
electromagnetic wave with an electric field component along the guiding
magnetic field. Its propagation direction is close to that of the guiding field
and orthogonal to the collision boundary. It has a low frequency and a
wavelength that equals several times the ion inertial length, which would be
indicative of a dispersive Alfven wave close to the ion cyclotron resonance
frequency of the left-handed mode (ion whistler), provided that the frequency
is appropriate. However, it moves with the super-alfvenic plasma collision
speed, suggesting that it is an Alfven precursor or a nonlinear MHD wave such
as a Short Large-Amplitude Magnetic Structure (SLAMS). The growth of the
magnetic amplitude of this wave to values well in excess of those of the
quasi-parallel guiding field and of the filamentation modes results in a
quasi-perpendicular shock. We present evidence for the instability of this mode
to a four wave interaction. The waves developing upstream of the dense cloud
give rise to electron acceleration ahead of the collision boundary. Energy
equipartition between the ions and the electrons is established at the shock
and the electrons are accelerated to relativistic speeds.Comment: 16 pages, 18 figures, Accepted for publication by Astron & Astrophy
A unique facility for V/STOL aircraft hover testing
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight
Selective removal of organics for water reclamation
Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. The feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates was demonstrated. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. The electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications are described. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are also described. The design of a novel electrochemical system that incorporates a proton exchange membrane (PEM) electrolyte is presented based on parametric test data and current fuel cell technology
- …