228 research outputs found

    The Nucleation and Growth of Calcium Phosphate Crystals at Protein and Phosphatidylserine Liposome Surfaces

    Get PDF
    The kinetics of calcium phosphate crystal growth at the surfaces of proteins and phospholipids has been investigated using free drift and constant composition methods in supersaturated calcium phosphate solutions (relative supersaturations: with respect to hydroxyapatite, HAP, σHAP = 15.0, and with respect to octacalcium phosphate, OCP, σOCP = 1. 9). Fibrinogen and collagen molecules adsorbed at hydrophobic surfaces as well as uncross-linked collagen fibrils induce ion binding and subsequent nucleation of calcium phosphate. The formation of OCP on phosphatidylserine vesicles introduced to highly supersaturated calcium phosphate solutions probably involves the interaction of the calcium ions with the ionized carboxylic groups of the phospholipid

    Temperature-Dependence Studies of Photorefractive Effect in a Low Glass-Transition-Temperature Polymer Composite

    Get PDF
    The temperature dependence of the photorefractive effect in a polymer composite containing poly(9-vinycarbazole), tricresyl phosphate, buckminsterfullerene, and 4-(N,N-diethylamino)-β-nitrostyrene is presented. The photoconductive, electro-optic and photorefractive properties of the material have been studied in the temperature range of 22-61°C. An apparent increase of electro-optic modulation with temperature and its eventual saturation is observed. This behavior is attributed to the temperature activated orientational mobility of the second-order nonlinear chromophores. The polarization anisotropy between the p- and s-polarized readouts is consistent with what would be expected on the basis of directly measured effective electro-optic coefficients. By correlating the electro-optic value with the diffraction efficiency, the temperature dependence of the space-charge field is obtained and explained by temperature dependencies of the dark conductivity and the photoconductivity of the material

    Spearmint (\u3cem\u3el\u3c/em\u3e-carvone) Oil and Wintergreen (methyl salicylate) Oil Emulsion is an Effective Immersion Anesthetic of Fishes

    Get PDF
    This study evaluates the effects of a spearmint (/-carvone) and wintergreen oil (methyl salicylate) emulsion (CMSE) on age 1 landlocked Atlantic salmon Salmo salar sebago (hereafter salmon). Salmon were immersed in either 257 µl/L CMSE or 75 mg/L tricaine methanesulfonate (MS-222) to induce anesthesia (stage 4), useful for emersion and noninvasive husbandry procedures, and then salmon were recovered in fresh water. Induction was quicker in the CMSE group; however, recovery was quicker in the MS-222 group. A second experiment was conducted in which salmon were immersed in 257 µl/L CMSE for 8.5 min, or 75 mg/L MS-222 for 8.5 min in order to compare electrocardiographs during deeper anesthesia (stage 5) between salmon continuously immersed in CMSE to those continuously immersed in MS-222. Because salmon remained sedated longer after CMSE exposure than after MS-222 exposure, a third group of salmon was immersed in 257 µl/L CMSE for just 2.5 min before undergoing the 6-min electrocardiograph procedure. Anesthesia induction rates, recovery rates, and electrocardiographs of salmon anesthetized with CMSE were comparable to salmon anesthetized with MS-222. Salmon anesthetized with CMSE and then transferred immediately to fresh water had more stable heart rates than salmon anesthetized with either MS-222 or CMSE continuously. Salmon bathed continuously in CMSE showed clinical signs of increasing anesthetic depth including decreasing heart rate, decreasing respiration rate and electrocardiograph abnormalities. The CMSE, with its mint and wintergreen concentrations less than in household products such as chewing gum, toothpaste, and mouthwash, is a potent, rapid-acting immersion fish anesthetic comparable to MS-222 for stages 4 and 5 anesthesia

    Screen-printed nanoparticles as anti-counterfeiting tags

    Get PDF
    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors

    High-pressure cryogelation of nanosilica and surface properties of cryosilicas

    Get PDF
    Silica cryogels (cryosilicas) in a powder state were synthesized with different concentrations of fumed silica A-300 (CA-300 = 5-20 wt.%), sonicated in aqueous suspension, then frozen at -14 oC at different pressures in a high-pressure stainless steel reactor (a freezing bomb), and dried in air at room temperature. To analyze the effects of low temperature and high pressure, samples were also prepared at -14 oC or room temperature and standard pressure. The structural and adsorption properties of the powder materials were studied using nitrogen adsorption, high-resolution transmission electron microscopy, infrared spectroscopy, thermogravimetry, low-temperature 1H NMR spectroscopy and thermally stimulated depolarization current. The structural, textural, adsorption and relaxation characteristics of high-pressure cryogel hydrogels and related dried powders are strongly dependent on the silica content in aqueous suspensions frozen at 1, 450 or 1000 atmospheres and then dried. The largest changes are found with CA-300 = 20 wt.% which are analyzed with respect to the interfacial behavior of nonpolar, weakly polar and polar adsorbates using low temperature 1H NMR spectroscopy

    Boundary critical behavior at m-axial Lifshitz points for a boundary plane parallel to the modulation axes

    Full text link
    The critical behavior of semi-infinite dd-dimensional systems with nn-component order parameter ϕ\bm{\phi} and short-range interactions is investigated at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. The associated mm modulation axes are presumed to be parallel to the surface, where 0md10\le m\le d-1. An appropriate semi-infinite ϕ4|\bm{\phi}|^4 model representing the corresponding universality classes of surface critical behavior is introduced. It is shown that the usual O(n) symmetric boundary term ϕ2\propto \bm{\phi}^2 of the Hamiltonian must be supplemented by one of the form λ˚α=1m(ϕ/xα)2\mathring{\lambda} \sum_{\alpha=1}^m(\partial\bm{\phi}/\partial x_\alpha)^2 involving a dimensionless (renormalized) coupling constant λ\lambda. The implied boundary conditions are given, and the general form of the field-theoretic renormalization of the model below the upper critical dimension d(m)=4+m/2d^*(m)=4+{m}/{2} is clarified. Fixed points describing the ordinary, special, and extraordinary transitions are identified and shown to be located at a nontrivial value λ\lambda^* if ϵd(m)d>0\epsilon\equiv d^*(m)-d>0. The surface critical exponents of the ordinary transition are determined to second order in ϵ\epsilon. Extrapolations of these ϵ\epsilon expansions yield values of these exponents for d=3d=3 in good agreement with recent Monte Carlo results for the case of a uniaxial (m=1m=1) Lifshitz point. The scaling dimension of the surface energy density is shown to be given exactly by d+m(θ1)d+m (\theta-1), where θ=νl4/νl2\theta=\nu_{l4}/\nu_{l2} is the anisotropy exponent.Comment: revtex4, 31 pages with eps-files for figures, uses texdraw to generate some graphs; to appear in PRB; v2: some references and additional remarks added, labeling in figure 1 and some typos correcte

    Can dissonance engineering improve risk analysis of human–machine systems?

    Get PDF
    The paper discusses dissonance engineering and its application to risk analysis of human–machine systems. Dissonance engineering relates to sciences and technologies relevant to dissonances, defined as conflicts between knowledge. The richness of the concept of dissonance is illustrated by a taxonomy that covers a variety of cognitive and organisational dissonances based on different conflict modes and baselines of their analysis. Knowledge control is discussed and related to strategies for accepting or rejecting dissonances. This acceptability process can be justified by a risk analysis of dissonances which takes into account their positive and negative impacts and several assessment criteria. A risk analysis method is presented and discussed along with practical examples of application. The paper then provides key points to motivate the development of risk analysis methods dedicated to dissonances in order to identify the balance between the positive and negative impacts and to improve the design and use of future human–machine system by reinforcing knowledge

    Revisiting the pulsational characteristics of the exoplanet host star β Pictoris

    Get PDF
    Context. Exoplanet properties crucially depend on the parameters of their host stars: more accurate stellar parameters yield more accurate exoplanet characteristics. When the exoplanet host star shows pulsations, asteroseismology can be used for an improved description of the stellar parameters. Aims. We aim to revisit the pulsational properties of β Pic and identify its pulsation modes from normalized amplitudes in five different passbands. We also investigate the potential presence of a magnetic field. Methods. We conducted a frequency analysis using three seasons of BRITE-Constellation observations in the two BRITE filters, the about 620-day-long bRing light curve, and the nearly 8-year-long SMEI photometric time series. We calculated normalized amplitudes using all passbands and including previously published values obtained from ASTEP observations. We investigated the magnetic properties of β Pic using spectropolarimetric observations conducted with the HARPSpol instrument. Using 2D rotating models, we fit the normalized amplitudes and frequencies through Monte Carlo Markov chains. Results. We identify 15 pulsation frequencies in the range from 34 to 55 d−1, where two, F13 at 53.6917 d−1 and F11 at 50.4921 d−1, display clear amplitude variability. We use the normalized amplitudes in up to five passbands to identify the modes as three ℓ = 1, six ℓ = 2, and six ℓ = 3 modes. β Pic is shown to be non-magnetic with an upper limit of the possible undetected dipolar field of 300 Gauss. Conclusions. Multiple fits to the frequencies and normalized amplitudes are obtained, including one with a near equator-on inclination for β Pic, which corresponds to our expectations based on the orbital inclination of β Pic b and the orientation of the circumstellar disk. This solution leads to a rotation rate of 27% of the Keplerian breakup velocity, a radius of 1.497 ± 0.025 R⊙, and a mass of 1.797 ± 0.035 M⊙. The ∼2% errors in radius and mass do not account for uncertainties in the models and a potentially erroneous mode-identification.D.R.R. acknowledges the support of the French Agence Nationale de la Recherche (ANR) to the ESRR project under grant ANR16-CE31-0007 as well as financial support from the Programme National de Physique Stellaire (PNPS) of the CNRS/INSU co-funded by the CEA and the CNES. A.Pi. acknowledges support from the NCN grant 2016/21/B/ST9/01126. APo was responsible for image processing and automation of photometric routines for the data registered by the BRITE nano-satellite constellation, and was supported by the statutory activities grant BK/200/RAU1/2018 t.3. GH thanks the Polish National Center for Science (NCN) for support through grant 2015/18/A/ST9/00578. The research of S.M.R. and A.F.J.M. has been supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. GAW acknowledges Discovery Grant support from the Natural Science and Engineering Research Council (NSERC) of Canada. MI was the recipient of an Australian Research Council Future Fellowship (FT130100235) funded by the Australian Government. SNM is a U.S. Department of Defense SMART scholar sponsored by the U.S. Navy through SSC-LANT. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. E.E.M. and S.N.M. acknowledge support from the NASA NExSS program. The bRing observatory at Siding Springs, Australia was supported by a University of Rochester University Research Award

    Bulk and Boundary Critical Behavior at Lifshitz Points

    Full text link
    Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard ϕ4\phi^4 model. Analyzing these models systematically via modern field-theoretic renormalization group methods has been a long-standing challenge ever since their introduction in the middle of the 1970s. We survey the recent progress made in this direction, discussing results obtained via dimensionality expansions, how they compare with Monte Carlo results, and open problems. These advances opened the way towards systematic studies of boundary critical behavior at mm-axial Lifshitz points. The possible boundary critical behavior depends on whether the surface plane is perpendicular to one of the mm modulation axes or parallel to all of them. We show that the semi-infinite field theories representing the corresponding surface universality classes in these two cases of perpendicular and parallel surface orientation differ crucially in their Hamiltonian's boundary terms and the implied boundary conditions, and explain recent results along with our current understanding of this matter.Comment: Invited contribution to STATPHYS 22, to be published in the Proceedings of the 22nd International Conference on Statistical Physics (STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP), 4--9 July 2004, Bangalore, Indi
    corecore