3,284 research outputs found

    The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade

    Get PDF
    Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation. © 2014 Springer Science+Business Media Dordrecht

    Emotion Differentiation as a Protective Factor Against Nonsuicidal Self-Injury in Borderline Personality Disorder

    Full text link
    Evidence that nonsuicidal self-injury (NSSI) serves a maladaptive emotion regulation function in borderline personality disorder (BPD) has drawn attention to processes that may increase risk for NSSI by exacerbating negative emotion, such as rumination. However, more adaptive forms of emotion processing, including differentiating broad emotional experiences into nuanced emotion categories, might serve as a protective factoragainst NSSI. Using an experience-sampling diary, the present study tested whether differentiation of negative emotion was associated with lower frequency of NSSI acts and urges in 38 individuals with BPD who reported histories of NSSI. Participants completed a dispositional measure of rumination and a 21-day experience-sampling diary, which yielded an index of negative emotion differentiation and frequency of NSSI acts and urges. A significant rumination by negative emotion differentiation interaction revealed that rumination predicted higher rates of NSSI acts and urges in participants with difficulty differentiating their negative emotions. The results extend research on emotion differentiation into the clinical literature and provide empirical support for clinical theories that suggest emotion identification and labeling underlie strategies for adaptive self-regulation and decreased NSSI risk in BPD

    Prefix-Projection Global Constraint for Sequential Pattern Mining

    Full text link
    Sequential pattern mining under constraints is a challenging data mining task. Many efficient ad hoc methods have been developed for mining sequential patterns, but they are all suffering from a lack of genericity. Recent works have investigated Constraint Programming (CP) methods, but they are not still effective because of their encoding. In this paper, we propose a global constraint based on the projected databases principle which remedies to this drawback. Experiments show that our approach clearly outperforms CP approaches and competes well with ad hoc methods on large datasets

    High-precision calculations of In I and Sn II atomic properties

    Full text link
    We use all-order relativistic many-body perturbation theory to study 5s^2 nl configurations of In I and Sn II. Energies, E1-amplitudes, and hyperfine constants are calculated using all-order method, which accounts for single and double excitations of the Dirac-Fock wave functions.Comment: 10 pages, accepted to PRA; v2: Introduction changed, references adde

    Long-term probability distribution of fixed offshore structuralresponse using animproved version of finite memory nonlinear system procedure

    Get PDF
    Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. Due to nonlinearity of the drag component of Morison’s wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian [1-2]; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. However, it has recently been shown that the short-term response of an offshore structure exposed to Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system (FMNS) [3]. Previous investigation shows that the developed FMNS models reduce the computational effort but the predictions are not very good for low intensity sea states. Therefore, to overcome this deficiency, a modified version of FMNS models is referred to as MFMNS models is used to determine the extreme response values which improves the accuracy but is computationally less efficient than FMNS models. In this paper, the 100-year responses derived from the long-term probability distribution of the extreme responses from MFMNS and FMNS models are compared with corresponding distributions from the CTS method is investigated with the effect of current to establish their level of accuracy. The methodology for derivation of the long-term distribution of extreme responses (and the evaluation of 100-year responses) is discussed. The accuracy of the predictions of the 100- year responses from MFMNS and FMNS models will then be investigated

    Comparison of the extreme responses from different methods of simulating wave kinematics

    Get PDF
    Linear random wave theory (LRWT) is frequently used to simulate water particle kinematics at different nodes of an offshore structure from a reference surface elevation record. However, it is well known that LRWT leads to water particle kinematics with exaggerated high-frequency components in the vicinity of mean water level (MWL). Methods have been introduced to overcome this problem of high kinematics above the MWL consists of using linear wave theory (such as Wheeler, vertical stretching, effective node elevation and effective water depth methods) can be used to provide a more realistic representation of near- surface wave kinematics. There is promising as there is some evidence that the water particle kinematics from the Wheeler method are underestimated and that those from the vertical stretching method are somewhat exaggerated. In this paper, the comparisons of the probability distributions of extreme values from different methods of simulation wave kinematics are investigated by using Monte Carlo simulation procedure
    • …
    corecore