34,528 research outputs found
Subject-specific finite element modelling of the human hand complex : muscle-driven simulations and experimental validation
This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future
Recommended from our members
Robust H∞ control for discrete-time fuzzy systems with infinite-distributed delays
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H∞ control problem for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays and uncertain parameters. The time delay is assumed to be infinitely distributed in the discrete-time domain, and the uncertain parameters are norm-bounded. By using the linear matrix inequality (LMI) technique, sufficient conditions are derived for ensuring the exponential stability as well as the H infin performance for the closed-loop fuzzy control system. It is also shown that the controller gain can be characterized in terms of the solution to a set of LMIs, which can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures
Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the
U.K., the National Natural Science Foundation of China under Grant 61028008
and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany.
Recommended by Associate Editor E. Fabre
Strong GeV Emission Accompanying TeV Blazar H1426+428
For High frequency BL Lac objects (HBLs) like H1426+428, a significant
fraction of their TeV gamma-rays emitted are likely to be absorbed in
interactions with the diffuse IR background, yielding pairs. The
resulting pairs generate one hitherto undiscovered GeV emission by
inverse Compton scattering with the cosmic microwave background photons
(CMBPs). We study such emission by taking the 1998-2000 CAT data, the
reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra
proposed by Aharonian et al. (2003a). We numerically calculate the scattered
photon spectra for different intergalactic magnetic field (IGMF) strengths. If
the IGMF is about or weaker, there comes very strong GeV
emission, whose flux is far above the detection sensitivity of the upcoming
satellite GLAST! Considered its relatively high redshift (), the
detected GeV emission in turn provides us a valuable chance to calibrate the
poor known spectral energy distribution of the intergalactic infrared
background, or provides us some reliable constraints on the poorly known IGMF
strength.Comment: 5 pages, 1 figure. A&A in Pres
Filtering and control for unreliable communication: The discrete-time case
Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the past decades, communication networks have been extensively employed in many practical control systems, such as manufacturing plants, aircraft, and spacecraft to transmit information and control signals between the system components. When a control loop is closed via a serial communication channel, a networked control system (NCS) is formed. NCSs have become very popular for their great advantages over traditional systems (e.g., low cost, reduced weight, and power requirements, etc.). Generally, it has been implicitly assumed that the communication between the system components is perfect; that is, the signals transmitted from the plant always arrive at the filter or controller without any information loss. Unfortunately, such an assumption is not always true. For example, a common feature of the NCSs is the presence of significant network-induced delays and data losses across the networks. Therefore, an emerging research topic that has recently drawn much attention is how to cope with the effect of network-induced phenomena due to the unreliability of the network communication. This special issue aims at bringing together the latest approaches to understand, filter, and control for discrete-time systems under unreliable communication. Potential topics include but are not limited to (a) multiobjective filtering or control, (b) network-induced phenomena, (c) stability analysis, (d) robustness and fragility, and (e) applications in real-world discrete-time systems
Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities
This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 John Wiley & Sons, Ltd.In this paper, the gain-scheduled control problem is addressed by using probability-dependent Lyapunov functions for a class of discrete-time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time-varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain-scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed-loop system is exponentially mean-square stable. Note that the designed gain-scheduled controller is based on the measured time-varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time-varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the UK, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61134009, 61074016, 61104125 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany
Recommended from our members
Filtering for networked stochastic time-delay systems with sector nonlinearity
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with network-induced incomplete measurements. The incomplete measurements include both the multiple random communication delays and random packet losses, which are modeled by a unified stochastic expression in terms of a set of indicator functions that is dependent on certain stochastic variable. The nonlinear functions are assumed to satisfy the sector nonlinearities. The purpose of the addressed filtering problem is to design a linear filter such that the filtering-error dynamics is exponentially mean-square stable. By using the linear-matrix-inequality (LMI) method and delay-dependent technique, sufficient conditions are derived which are dependent on the occurrence probability of both the random communication delays and missing measurement. The filter gain is then characterized by the solution to a set of LMIs. A simulation example is exploited to demonstrate the effectiveness of the proposed design procedures
Probability-dependent gain-scheduled filtering for stochastic systems with missing measurements
Copyright @ 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This brief addresses the gain-scheduled filtering problem for a class of discrete-time systems with missing measurements, nonlinear disturbances, and external stochastic noise. The missing-measurement phenomenon is assumed to occur in a random way, and the missing probability is time-varying with securable upper and lower bounds that can be measured in real time. The multiplicative noise is a state-dependent scalar Gaussian white-noise sequence with known variance. The addressed gain-scheduled filtering problem is concerned with the design of a filter such that, for the admissible random missing measurements, nonlinear parameters, and external noise disturbances, the error dynamics is exponentially mean-square stable. The desired filter is equipped with time-varying gains based primarily on the time-varying missing probability and is therefore less conservative than the traditional filter with fixed gains. It is shown that the filter parameters can be derived in terms of the measurable probability via the semidefinite program method.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61074016 and 60974030, the Shanghai Natural
Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany
Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey
The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out
Recommended from our members
On nonlinear H∞ filtering for discrete-time stochastic systems with missing measurements
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the H∞ filtering problem is investigated for a general class of nonlinear discrete-time stochastic systems with missing measurements. The system under study is not only corrupted by state-dependent white noises but also disturbed by exogenous inputs. The measurement output contains randomly missing data that is modeled by a Bernoulli distributed white sequence with a known conditional probability. A filter of very general form is first designed such that the filtering process is stochastically stable and the filtering error satisfies H infin performance constraint for all admissible missing observations and nonzero exogenous disturbances under the zero-initial condition. The existence conditions of the desired filter are described in terms of a second-order nonlinear inequality. Such an inequality can be decoupled into some auxiliary ones that can be solved independently by taking special form of the Lyapunov functionals. As a consequence, a linear time-invariant filter design problem is discussed for the benefit of practical applications, and some simplified conditions are obtained. Finally, two numerical simulation examples are given to illustrate the main results of this paper
- …