18 research outputs found

    Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function

    No full text
    Background: Alcohol intake is inversely related to rheumatoid arthritis (RA) disease incidence and severity. Resveratrol, a safe, well-described plant-derived compound, possesses anti-inflammation and immune-regulatory properties and is present in red wine. As such, it could mediate anti-inflammatory properties of the latter and offer novel therapeutic utility in is own right. Objective: To evaluate the therapeutic effect of resveratrol on collagen-induced arthritis (CIA) and its putative immune modulation in mice. Methods: CIA was induced in DBA1 mice by immunisation with collagen II. Different doses of resveratrol were administered before or after the development of CIA. The levels of antibody and cytokines in serum or in draining lymph node (DLN) lymphocyte culture supernatants were measured by ELISA and Th17 cell development in DLN was monitored by flow cytometry. Results: Either prophylactic or therapeutic administration of resveratrol attenuated clinical parameters and bone erosion in CIA mice. The arthritis-protective effects were associated with markedly reduced serum levels of pro-inflammatory cytokines and collagen-specific, but not total, IgG, and with reduced numbers of Th17 cells and the production of IL-17 in DLN. Conclusion: Resveratrol modulates inflammatory arthritis in rodents by selectively suppressing key cellular and humoral responses necessary for disease development. This may partly explain the protective effects of red wine but importantly may offer a novel, effective and safe pathway whereby novel agents could be developed to treat RA

    The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo

    No full text
    Summary We tested whether GPRC6A, the putative receptor of undercarboxylated osteocalcin (ucOC), is present in mouse muscle and whether ucOC increases insulin sensitivity following ex vivo muscle contraction. GPPRC6A is expressed in mouse muscle and in the mouse myotubes from a cell line. ucOC potentiated the effect of ex vivo contraction on insulin sensitivity. Introduction Acute exercise increases skeletal muscle insulin sensitivity. In humans, exercise increases circulating ucOC, a hormone that increases insulin sensitivity in rodents. We tested whether GPRC6A, the putative receptor of ucOC, is present in mouse muscle and whether recombinant ucOC increases insulin sensitivity in both C2C12 myotubes and whole mouse muscle following ex vivo muscle contraction. Methods Glucose uptake was examined in C2C12 myotubes that express GPRC6A following treatment with insulin alone or with insulin and increasing ucOC concentrations (0.3, 3, 10 and 30 ng/ml). In addition, glucose uptake, phosphorylated (p-)AKT and p-AS160 were examined ex vivo in extensor digitorum longus (EDL) dissected from C57BL/6J wild-type mice, at rest, following insulin alone, after muscle contraction followed by insulin and after muscle contraction followed by recombinant ucOC then insulin exposure. Results We observed protein expression of the likely receptor for ucOC, GPRC6A, in whole muscle sections and differentiated mouse myotubes. We observed reduced GPRC6A expression following siRNA transfection. ucOC significantly increased insulin-stimulated glucose uptake dose-dependently up to 10 ng/ml, in differentiated mouse C2C12 myotubes. Insulin increased EDL glucose uptake (∼30 %, p < 0.05) and p-AKT and p-AKT/AKT compared with rest (all p < 0.05). Contraction prior to insulin increased muscle glucose uptake (∼25 %, p < 0.05), p-AKT, p-AKT/AKT, p-AS160 and p-AS160/AS160 compared with contraction alone (all p < 0.05). ucOC after contraction increased insulin-stimulated muscle glucose uptake (∼12 % p < 0.05) and p-AS160 (<0.05) more than contraction plus insulin alone but without effect on p-AKT. In the absence of insulin and/or of contraction, ucOC had no significant effect on muscle glucose uptake. Conclusions GPRC6A, the likely receptor of osteocalcin (OC), is expressed in mouse muscle. ucOC treatment augments insulin-stimulated skeletal muscle glucose uptake in C2C12 myotubes and following ex vivo muscle contraction. ucOC may partly account for the insulin sensitizing effect of exercise

    The effects of acute exercise on bone turnover markers in middle-aged and older adults: A systematic review

    Get PDF
    © 2020 Elsevier Inc. Background: Bone turnover is the cellular machinery responsible for bone integrity and strength and, in the clinical setting, it is assessed using bone turnover markers (BTMs). Acute exercise can induce mechanical stress on bone which is needed for bone remodelling, but to date, there are conflicting results in regards to the effects of varying mechanical stimuli on BTMs. Objectives: This systematic review examines the effects of acute aerobic, resistance and impact exercises on BTMs in middle and older-aged adults and examines whether the responses are determined by the exercise mode, intensity, age and sex. Methods: We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd April 2020. Eligibility criteria included randomised controlled trials (RCTs) and single-arm studies that included middle-aged (50 to 65 years) and older adults (\u3e65 years) and, a single-bout, acute-exercise (aerobic, resistance, impact) intervention with measurement of BTMs. PROSPERO registration number CRD42020145359. Results: Thirteen studies were included; 8 in middle-aged (n = 275, 212 women/63 men, mean age = 57.9 ± 1.5 years) and 5 in older adults (n = 93, 50 women/43 men, mean age = 68.2 ± 2.2 years). Eleven studies included aerobic exercise (AE, 7 middle-aged/4 older adults), and two included resistance exercise (RE, both middle-aged). AE significantly increased C-terminal telopeptide (CTX), alkaline phosphatase (ALP) and bone-ALP in middle-aged and older adults. AE also significantly increased total osteocalcin (tOC) in middle-aged men and Procollagen I Carboxyterminal Propeptide and Cross-Linked Carboxyterminal Telopeptide of Type I Collagen in older women. RE alone decreased ALP in older adults. In middle-aged adults, RE with impact had no effect on tOC or BALP, but significantly decreased CTX. Impact (jumping) exercise alone increased Procollagen Type 1 N Propeptide and tOC in middle-aged women. Conclusion: Acute exercise is an effective tool to modify BTMs, however, the response appears to be exercise modality-, intensity-, age- and sex-specific. There is further need for higher quality and larger RCTs in this area

    Uncovering the Bone-Muscle Interaction and Its Implications for the Health and Function of Older Adults (the Wellderly Project): Protocol for a Randomized Controlled Crossover Trial

    Get PDF
    Background: Bone and muscle are closely linked anatomically, biochemically, and metabolically. Acute exercise affects both bone and muscle, implying a crosstalk between the two systems. However, how these two systems communicate is still largely unknown. We will explore the role of undercarboxylated osteocalcin (ucOC) in this crosstalk. ucOC is involved in glucose metabolism and has a potential role in muscle maintenance and metabolism. Objective: The proposed trial will determine if circulating ucOC levels in older adults at baseline and following acute exercise are associated with parameters of muscle function and if the ucOC response to exercise varies between older adults with low muscle quality and those with normal or high muscle quality. Methods: A total of 54 men and women aged 60 years or older with no history of diabetes and warfarin and vitamin K use will be recruited. Screening tests will be performed, including those for functional, anthropometric, and clinical presentation. On the basis of muscle quality, a combined equation of lean mass (leg appendicular skeletal muscle mass in kg) and strength (leg press; one-repetition maximum), participants will be stratified into a high or low muscle function group and randomized into the controlled crossover acute intervention. Three visits will be performed approximately 7 days apart, and acute aerobic exercise, acute resistance exercise, and a control session (rest) will be completed in any order. Our primary outcome for this study is the effect of acute exercise on ucOC in older adults with low muscle function and those with high muscle function. Results: The trial is active and ongoing. Recruitment began in February 2018, and 38 participants have completed the study as of May 26, 2019. Conclusions: This study will provide novel insights into bone and muscle crosstalk in older adults, potentially identifying new clinical biomarkers and mechanistic targets for drug treatments for sarcopenia and other related musculoskeletal conditions

    Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes

    Get PDF
    Objectives: Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D. Methods: The gene expression of the NPY system in human islets from nondiabetic subjects and subjects with T2D was determined and correlated with the stimulation index. The glucose-lowering and β-cell-protective effects of BIBO3304, a selective orally bioavailable Y1 receptor antagonist, in high-fat diet (HFD)/multiple low-dose streptozotocin (STZ)-induced and genetically obese (db/db) T2D mouse models were assessed. Results: In this study, we identified a more than 2-fold increase in NPY1R and its ligand, NPY mRNA expression in human islets from subjects with T2D, which was significantly associated with reduced insulin secretion. Consistently, the pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, we demonstrated that the inhibition of Y1 receptors by BIBO3304 led to reduced adiposity and enhanced insulin action in the skeletal muscle. Importantly, the Y1 receptor antagonist BIBO3304 treatment also improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycemic control in both HFD/multiple low-dose STZ-induced and db/db T2D mice. Conclusions: Our results revealed a novel causal link between increased islet NPY-Y1 receptor gene expression and β-cell dysfunction and failure in human T2D, contributing to the understanding of the pathophysiology of T2D. Furthermore, our results demonstrate that the inhibition of the Y1 receptor by BIBO3304 represents a potential β-cell-protective therapy for improving functional β-cell mass and glycemic control in T2D.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes

    Get PDF
    Objectives: Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D. Methods: The gene expression of the NPY system in human islets from nondiabetic subjects and subjects with T2D was determined and correlated with the stimulation index. The glucose-lowering and β-cell-protective effects of BIBO3304, a selective orally bioavailable Y1 receptor antagonist, in high-fat diet (HFD)/multiple low-dose streptozotocin (STZ)-induced and genetically obese (db/db) T2D mouse models were assessed. Results: In this study, we identified a more than 2-fold increase in NPY1R and its ligand, NPY mRNA expression in human islets from subjects with T2D, which was significantly associated with reduced insulin secretion. Consistently, the pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, we demonstrated that the inhibition of Y1 receptors by BIBO3304 led to reduced adiposity and enhanced insulin action in the skeletal muscle. Importantly, the Y1 receptor antagonist BIBO3304 treatment also improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycemic control in both HFD/multiple low-dose STZ-induced and db/db T2D mice. Conclusions: Our results revealed a novel causal link between increased islet NPY-Y1 receptor gene expression and β-cell dysfunction and failure in human T2D, contributing to the understanding of the pathophysiology of T2D. Furthermore, our results demonstrate that the inhibition of the Y1 receptor by BIBO3304 represents a potential β-cell-protective therapy for improving functional β-cell mass and glycemic control in T2D

    Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?

    No full text
    In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global scale or only regional scale models. The study utilizes 13 regional and 7 global models participating in the HTAP2/AQMEII3 activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured spectra and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. The main conclusion of this study is that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. Moreover, the optimal set is constructed from an equal number of global and regional models at only 15% of the stations. Finally, the study reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble.JRC.D.5-Food Securit
    corecore