400 research outputs found

    Organic petrography and thermal maturity of the permian roseneath and murteree shales in the cooper basin, Australia

    Get PDF
    The Permo-Triassic Cooper Basin is one of the largest intracratonic basins in Australia, covering approximately 130,000 km2 in South Australia and Queensland. The basin is one of Australia's major onshore hydrocarbon province and most prospective region for both conventional and unconventional hydrocarbon explorations. Organic petrography and thermal maturity of two Permian lacustrine shale units in the Cooper Basin, the Murteree and Roseneath shales, were investigated on 21 wells with the objective of evaluating the gas generating potential of these units. Vitrinite reflectance values for the Murteree and Roseneath shales range between 1.17% and 2.00%. Macerals show systematic changes in properties relative to maturity rank. A range of maceral compositions, dominated by vitrinite group macerals, are present in both units, which vary between rich and very rich in organic content. Rock-Eval data suggest fair to very good kerogen quality (of kerogen types II, III, and IV ranging from immature to mature) and imply a mostly gas-prone generation potential in the shales

    Sediment flux and composition changes in canyons on a carbonate-siliciclastic margin: evidence from turbidite deposits along the Great Barrier Reef margin

    Get PDF
    The shelf edge and slope of the Great Barrier Reef is heavily incised by submarine canyons which terminate in the Queensland Trough. Traditionally, sedimentation on the margin has been investigated within the framework of idealized siliciclastic or carbonate systems, depending on whether rivers or shallow marine carbonate producers dominate supply. The widely accepted paradigm ('reciprocal' sedimentation) states that sea-level strongly influences shelf, slope and basin sedimentation, with siliciclastics dominating lowstand periods and carbonates dominating transgressions/highstands. However, recent work (e.g., Dunbar and Dickens, 2003) on cores from the slope and basin has challenged this view. These workers argue that accumulation of both siliciclastic and carbonate sediments varies in phase, with the highest rates observed during transgressions, lowest rates during lowstands and moderate sedimentation during highstands. Irrespective of which model is correct, exactly how the sediment (carbonate or siliciclastic) moves from the shelf to the basin, and the role of submarine canyons in this process is not understood. We address this problem directly by investigating sedimentation in the canyons bordering the GBR. Combining new multibeam bathymetry and seismic data with x-radiograph, magnetic susceptibility, insitu reflectance spectroscopy, grain size, CNS, petrologic, pollen and 14C AMS analyses of canyon cores off Cooktown and Cairns, we aim to establish the source, timing and frequency of turbidite events deposited in the canyons over the last glacial to interglacial cycle, thereby testing the competing models. Our preliminary data confirm that: (1) the canyons record a distinct sedimentary shift from siliciclastic turbidites to calciturbidites; (2) the siliciclastic turbidites were deposited before 28 ka - providing strong support for the "reciprocal" model of margin sedimentation; and (3) the canyons have been active throughout the last deglaciation and into the late Holocene

    Evolution of extensional basins and basin and range topography west of Death Valley, California

    Get PDF
    This is the published version. Copyright 2010 American Geophysical Union. All Rights Reserved.Neogene extension in the Death Valley region, SE California, has produced a variety of sedimentary basins. Diachronous movements on an array of strike-slip and normal fault systems have resulted in the uplift and preservation of older basins in modern ranges. One of the best exposed of these is the Nova basin on the western flank of the Panamint Mountains. The Nova basin includes over 2000 m of sedimentary and volcanic rocks deposited during denudation of the Panamint Mountains metamorphic core complex in late Miocene (?) – early Pliocene time. The principal growth structure for the basin was the Emigrant detachment, which initiated and moved at a low angle. Modern Panamint Valley, west of the range, developed as a consequence of Late Pliocene - Recent, kinematically linked movement on the right-slip, high-angle Hunter Mountain fault zone and the low-angle Panamint Valley detachment. Detailed mapping of the intersection between the Emigrant and Panamint Valley detachments demonstrates that segments of the earlier system remained active during development of Panamint Valley and, thus, during development of modern Basin and Range topography as well. These results indicate that large-scale extension in the Death Valley region, accommodated by movement on low- to moderate-angle normal fault systems and high-angle strike-slip fault systems, is a continuing process. Basin and Range topography in the Panamint Valley - Death Valley area was generated at least in part by displacements on low-angle detachments rather than high-angle normal faults

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a KK^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    Chiral quark-soliton model in the Wigner-Seitz approximation

    Get PDF
    In this paper we study the modification of the properties of the nucleon in the nucleus within the quark-soliton model. This is a covariant, dynamical model, which provides a non-linear representation of the spontaneously broken SU(2)_L X SU(2)_R symmetry of QCD. The effects of the nuclear medium are accounted for by using the Wigner-Seitz approximation and therefore reducing the complex many-body problem to a simpler single-particle problem. We find a minimum in the binding energy at finite density, a change in the isoscalar nucleon radius and a reduction of the in-medium pion decay constant. The latter is consistent with a partial restoration of chiral symmetry at finite density, which is predicted by other models.Comment: 30 pages, 13 figures; uses REVTeX and epsfi

    Mineralogical variability of the Permian Roseneath and Murteree Shales from the Cooper Basin, Australia: Implications for shale properties and hydrocarbon extraction

    Get PDF
    Brittleness and plasticity indices in hydrocarbon reservoirs are calculated to understand how rocks behave under stress, and for assessing the fracturing performance of clay-rich shale reservoirs and assessing borehole stability. Evaluating shale plasticity/brittleness requires careful analysis of clay mineral composition in target shales and the development of fracking strategies for optimal shale stimulation. Here we report on the mineralogical variability of two Permian lacustrine shale units, the Roseneath and Murteree shales in the Cooper Basin, Australia, that are considered to have potential as unconventional hydrocarbon producers. The study involved a combination of X-ray diffraction, scanning electron microscopy and petrophysical modelling of the Roseneath and Murteree shales in order to obtain a better understanding of the compositions and microfabrics of these two units. This is part of a larger investigation of the shale gas potential of these two units in the Cooper Basin, and the results presented here may ultimately lead to improved reservoir stimulation techniques in both units. Core data has been integrated with wireline logging data to better identify brittle and plastic zones within the Roseneath and Murteree shales. Mineralogical analysis shows that both units are composed mainly of detrital quartz and clay/mica minerals with siderite cement. The clay mineral composition is dominated by illite/mica, and kaolinite in both units. However, based on the relative mineralogical differences between the two units, the Murteree Shale has more favourable brittle properties than the Roseneath Shale, and is considered to be more amenable to hydraulic fracturing for gas exploitation. However, the Roseneath Shale also has potential for gas stimulation, especially in intervals where siderite cement is prevalent

    Recurrent short sleep, chronic insomnia symptoms and salivary cortisol: A 10-year follow-up in the Whitehall II study

    Get PDF
    Although an association between both sleep duration and disturbance with salivary cortisol has been suggested, little is known about the long term effects of poor quality sleep on diurnal cortisol rhythm. The aim of this study was to examine the association of poor quality sleep, categorised as recurrent short sleep duration and chronic insomnia symptoms, with the diurnal release of cortisol. We examined this in 3314 participants from an occupational cohort, originally recruited in 1985-1989. Salivary cortisol was measured in 2007-2009 and six saliva samples were collected: (1) waking, (2) waking + 0.5 h, (3) +2.5 h, (4) +8 h, (5) +12 h and (6) bedtime, for assessment of the cortisol awakening response and the diurnal slope in cortisol secretion. Participants with the first saliva sample collected within 15 min of waking and not on steroid medication were examined. Short sleep duration (≤5 h) and insomnia symptoms (Jenkins scale, highest quartile) were measured in 1997-1999, 2003-2004 and 2007-2009. Recurrent short sleep was associated with a flatter diurnal cortisol pattern. A steeper morning rise in cortisol was observed among those reporting chronic insomnia symptoms at three time points and among those reporting short sleep twice, compared to those who never reported sleep problems. Participants reporting short sleep on three occasions had higher levels of cortisol later in the day, compared to those never reporting short sleep, indicated by a positive interaction with hours since waking (β = 0.02 (95% CI: 0.01, 0.03)). We conclude that recurrent sleep problems are associated with adverse salivary cortisol patterns throughout the day

    The combination of smoking with vitamin D deficiency impairs skeletal muscle fiber hypertrophy in response to overload in mice

    Get PDF
    Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet were exposed to CS or room air for 18 wk. Six weeks after initiation of smoke or air exposure, sham surgery or denervation of the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hypertrophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell infiltration (P < 0.05), independently of diet. Maximal exercise capacity, whole body strength, in situ plantaris muscle force, and key markers of hypertrophic signaling (Akt, 4EBP1, and FoxO1) were not significantly affected by smoking or diet. The increase in plantaris muscle fiber cross-sectional area in response to overload was attenuated in vitamin D-deficient CS-exposed mice (smoking × diet interaction for hypertrophy, P = 0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespective of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may be less likely to respond to a training program

    Magnetic resonance imaging, computed tomography, and 68Ga-DOTATOC positron emission tomography for imaging skull base meningiomas with infracranial extension treated with stereotactic radiotherapy - a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Magnetic resonance imaging (MRI) and computed tomography (CT) with <sup>68</sup>Ga-DOTATOC positron emission tomography (<sup>68</sup>Ga-DOTATOC-PET) were compared retrospectively for their ability to delineate infracranial extension of skull base (SB) meningiomas treated with fractionated stereotactic radiotherapy.</p> <p>Methods</p> <p>Fifty patients with 56 meningiomas of the SB underwent MRI, CT, and <sup>68</sup>Ga-DOTATOC PET/CT prior to fractionated stereotactic radiotherapy. The study group consisted of 16 patients who had infracranial meningioma extension, visible on MRI ± CT (MRI/CT) <it>or </it>PET, and were evaluated further. The respective findings were reviewed independently, analyzed with respect to correlations, and compared with each other.</p> <p>Results</p> <p>Within the study group, SB transgression was associated with bony changes visible by CT in 14 patients (81%). Tumorous changes of the foramen ovale and rotundum were evident in 13 and 8 cases, respectively, which were accompanied by skeletal muscular invasion in 8 lesions. We analysed six designated anatomical sites of the SB in each of the 16 patients. Of the 96 sites, 42 had infiltration that was delineable by MRI/CT and PET in 35 cases and by PET only in 7 cases. The mean infracranial volume that was delineable in PET was 10.1 ± 10.6 cm<sup>3</sup>, which was somewhat larger than the volume detectable in MRI/CT (8.4 ± 7.9 cm<sup>3</sup>).</p> <p>Conclusions</p> <p><sup>68</sup>Ga-DOTATOC-PET allows detection and assessment of the extent of infracranial meningioma invasion. This method seems to be useful for planning fractionated stereotactic radiation when used in addition to conventional imaging modalities that are often inconclusive in the SB region.</p
    corecore