118 research outputs found

    Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar.

    Full text link

    Hepatocyte growth factor in human osteoarthritic cartilage

    Get PDF
    AbstractObjective Hepatocyte growth factor/scatter factor is a potent mitogen, morphogen and motogen for a variety of mainly epithelial cells. Hepatocyte growth factor is synthesized by mesenchymal cells and can be found in various tissues. The objective of this study was to investigate the expression and distribution patterns of this pleiotropic growth factor and its receptor, the product of the proto-oncogene c-met in normal and osteoarthritic human knee cartilage.Methods Five normal and 14 osteoarthritic human cartilage samples graded histomorphologically by Mankin Score, were studied by radioactive in-situ hybridization and immunohistochemistry for the expression of Hepatocyte growth factor and the c-met receptor.Results Hepatocyte growth factor could be found by immunohistochemistry in the territorial matrix surrounding the chondrocytes of calcified cartilage and within the deep zone of normal cartilage. Chondrocytes of these cartilage zones showed also positive c-met receptor-staining. Moreover, a small number of chondrocytes in the superficial and intermediate zone showed c-met staining. In accordance with the increased hepatocyte growth factor staining of osteoarthritic cartilage, an enhanced expression of hepatocyte growth factor-RNA by chondrocytes of the deep zone as well as the deeper mid zone was observed. Contrary to normal cartilage,c-met was identified immunohistochemically in osteoarthritic chondrocytes of all cartilage zones.Conclusion These results indicate that hepatocyte growth factor seems to be acting in an autocrine/paracrine manner in normal and osteoarthritic cartilage. The ubiquitous presence of the HGF/HGF-receptor complex in osteoarthritic chondrocytes suggests that hepatocyte growth factor may contribute to the altered metabolism in osteoarthritic cartilage.{copy

    Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?

    Get PDF
    Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective harvesting and trophy hunting on long-term stability of exploited populations. Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist. Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material

    Expression of thrombospondin-1 and its receptor CD36 in human osteoarthritic cartilage

    No full text
    OBJECTIVE—Thrombospondin-1 (TSP-1), a trimeric glycoprotein, is involved in cell-matrix interactions of various tissues, particularly in cartilage. Biochemical analyses show expression of TSP-1 in human cartilage, but its cellular source as well as the presence of its main surface receptors CD36 and CD51 in normal and osteoarthritic cartilage remain unknown. Therefore, to localise TSP-1 and its receptors immunohistochemistry and in situ hybridisation were used.
METHODS—Radioactive in situ hybridisations with an RNA probe that encodes TSP-1 combined with immunostaining were carried out to investigate the expression patterns of TSP-1, CD36, and CD51 in seven normal and 23 osteoarthritic human cartilage samples.
RESULTS—In normal cartilage TSP-1 was present mainly in the middle and upper deep zone. RNA expression was predominantly seen over chondrocytes of the middle zone. CD36 was found in chondrocytes of the superficial and upper middle zone. In mild and moderate osteoarthritic cartilage an increased number of TSP-1 expressing chondrocytes were seen and an increased pericellular staining close to the surface. In severe osteoarthritic cartilage a decrease in the number of TSP-1 synthesising chondrocytes and a strong reduction in matrix staining were observed. Most of these severe osteoarthritic samples showed a strongly enhanced number of CD36 positive chondrocytes.
CONCLUSION—The cellular source of TSP-1 in normal cartilage is mainly mid-zone chondrocytes, which also express CD36. In early osteoarthritic cartilage lesions an increase of TSP-1 was seen, whereas reduced TSP-1 synthesis is paralleled by a strong decrease in TSP-1 protein staining in severe osteoarthritis. Furthermore, in severe osteoarthritic cartilage the number of CD36 immunostained chondrocytes is significantly increased.

    • …
    corecore