142 research outputs found

    Tunable Charge and Spin Order in PrNiO3_3 Thin Films and Superlattices

    Full text link
    We have used polarized Raman scattering to probe lattice vibrations and charge ordering in 12 nm thick, epitaxially strained PrNiO3_3 films, and in superlattices of PrNiO3_3 with the band-insulator PrAlO3_3. A carefully adjusted confocal geometry was used to eliminate the substrate contribution to the Raman spectra. In films and superlattices under tensile strain, which undergo a metal-insulator transition upon cooling, the Raman spectra reveal phonon modes characteristic of charge ordering. These anomalous phonons do not appear in compressively strained films, which remain metallic at all temperatures. For superlattices under compressive strain, the Raman spectra show no evidence of anomalous phonons indicative of charge ordering, while complementary resonant x-ray scattering experiments reveal antiferromagnetic order associated with a modest increase in resistivity upon cooling. This confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons.Comment: PRL, in pres

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+δ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+δ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let

    A Comparison of Stripe Modulations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4

    Full text link
    We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 than in La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4 and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La1.875_{1.875}Ba0.125_{0.125}CuO4_4, ξhole=255±5\xi^{hole}=255\pm 5 \AA\ whereas for La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4F, ξhole=111±7\xi^{hole}=111\pm 7 \AA. We find that the modulations are temperature independent in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 in the low temperature tetragonal phase. In contrast, in La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.Comment: 6 pages, 4 figure

    Connection between charge-density-wave order and charge transport in the cuprate superconductors

    Get PDF
    Charge-density-wave (CDW) correlations within the quintessential CuO2_2 planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa2_2Cu3_3O6+δ_{6+{\delta}} (YBCO) [3] and HgBa2_2CuO4+δ_{4+{\delta}} (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]. Hg1201 features particularly high structural symmetry and recently has been demonstrated to exhibit Fermi-liquid charge transport in the relevant temperature-doping range of the phase diagram, whereas for YBCO and other cuprates this underlying property of the CuO2_2 planes is partially or fully masked [8-10]. It therefore is imperative to establish if the pristine transport behavior of Hg1201 is compatible with CDW order. Here we investigate Hg1201 (TcT_c = 72 K) via bulk Cu L-edge resonant X-ray scattering. We indeed observe CDW correlations in the absence of a magnetic field, although the correlations and competition with superconductivity are weaker than in YBCO. Interestingly, at the measured hole-doping level, both the short-range CDW and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which the CDW formation is preceded at the higher pseudogap temperature by qq = 0 magnetic order [11,12] and the build-up of significant dynamic antiferromagnetic correlations [13]. Furthermore, the smaller CDW modulation wave vector observed for Hg1201 is consistent with the larger electron pocket implied by both QO [4] and Hall-effect [14] measurements, which suggests that CDW correlations are indeed responsible for the low-temperature QO phenomenon

    Long-range charge density wave proximity effect at cuprate-manganate interfaces

    Get PDF
    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper-oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant x-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3_{2/3}Ca1/3_{1/3}MnO3_3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2_2Cu3_3O6+δ_{6+\delta} (δ∼1\bf \delta \sim 1), and that this effect persists over several tens of nm. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge density wave state in the cuprates, and more generally, to manipulate the interplay between different collective phenomena in metal oxides.Comment: modified version published in Nature Material

    Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems

    Get PDF
    Resonant x ray scattering at the Dy M 5 and Ni L 3 absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO3 DyScO3 superlattices. For superlattices with 2 unit cell thick LaNiO3 layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T ind 18 K, Dy Ni exchange interactions across the LaNiO3 DyScO3 interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare earth and transition metal ions thus open up new perspectives for the manipulation of spin structures in metal oxide heterostructures and device

    Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft x-ray diffraction

    Get PDF
    Strong resonant enhancements of the charge-order and spin-order superstructure-diffraction intensities in La1.8Sr0.2NiO4 are observed when x-ray energies in the vicinity of the Ni L2,3 absorption edges are used. The pronounced photon-energy and polarization dependences of these diffraction intensities allow for a critical determination of the local symmetry of the ordered spin and charge carriers. We found that not only the antiferromagnetic order but also the charge-order superstructure resides within the NiO2 layers; the holes are mainly located on in-plane oxygens surrounding a Ni2+ site with the spins coupled antiparallel in close analogy to Zhang-Rice singlets in the cuprates.Comment: 4 pages, 3 figure
    • …
    corecore