134 research outputs found

    The applicability of frame imaging from a spinning spacecraft. Volume 1: Summary report

    Get PDF
    A detailed study was made of frame-type imaging systems for use on board a spin stabilized spacecraft for outer planets applications. All types of frame imagers capable of performing this mission were considered, regardless of the current state of the art. Detailed sensor models of these systems were developed at the component level and used in the subsequent analyses. An overall assessment was then made of the various systems based upon results of a worst-case performance analysis, foreseeable technology problems, and the relative reliability and radiation tolerance of the systems. Special attention was directed at restraints imposed by image motion and the limited data transmission and storage capability of the spacecraft. Based upon this overall assessment, the most promising systems were selected and then examined in detail for a specified Jupiter orbiter mission. The relative merits of each selected system were then analyzed, and the system design characteristics were demonstrated using preliminary configurations, block diagrams, and tables of estimated weights, volumes and power consumption

    Metal oxide semiconductor thin-film transistors for flexible electronics

    Get PDF
    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided

    Genotypic and phenotypic variation among Staphylococcus saprophyticus from human and animal isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main aim of this study was to examine the genotypic and phenotypic diversity of <it>Staphylococcus saprophyticus </it>isolates from human and animal origin.</p> <p>Findings</p> <p>In total, 236 clinical isolates and 15 animal isolates of <it>S. saprophyticus </it>were characterized in respect of the occurrence of 9 potential virulence genes and four surface properties. All strains were PCR positive for the regulatory genes <it>agr</it>, <it>sar</it>>it>A and <it>rot </it>as well as for the surface proteins UafA and Aas. Nearly 90% of the clinical isolates were found to possess the gene for the surface-associated lipase Ssp and 10% for the collagen binding MSCRAMM SdrI. All animal isolates were negative for<it>sdrI</it>. Lipolytic activity could be detected in 66% of the clinical and 46% of the animal isolates. Adherence to collagen type I was shown of 20% of the clinical strains and 6% of the strains of animal origin. Most <it>S. saprophyticus </it>strains showed hydrophobic properties and only few could agglutinate sheep erythrocytes.</p> <p>Conclusions</p> <p>We described a broad analysis of animal and human <it>S. saprophyticus </it>isolates regarding virulence genes and phenotypic properties such as lipase activity, hydrophobicity, and adherence. While <it>S. saprophyticus </it>strains from animal sources have prerequisites for colonization of the urinary tract like the D-serine-deaminase, out findings suggested that they need to acquire new genes e.g. MSCRAMMS for adherence like sdrI and to modulate their existing properties e.g. increasing the lipase activity or reducing hydrophobicity. These apparently important new genes or properties for virulence have to be further analyzed.</p

    Control of Gastric H,K-ATPase Activity by Cations, Voltage and Intracellular pH Analyzed by Voltage Clamp Fluorometry in Xenopus Oocytes

    Get PDF
    Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively

    Kugelwellen und Antennen

    No full text

    Rapid Burkholderia pseudomallei

    No full text
    • …
    corecore