33 research outputs found

    Serum after Autologous Transplantation Stimulates Proliferation and Expansion of Human Hematopoietic Progenitor Cells

    Get PDF
    Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT) significantly enhanced proliferation, maintained primitive immunophenotype (CD34+, CD133+, CD45−) for more cell divisions and increased colony forming units (CFU) as well as the number of cobblestone area-forming cells (CAFC). The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT). Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1) increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool

    Mathematical Modelling as a Proof of Concept for MPNs as a Human Inflammation Model for Cancer Development

    Get PDF
    <p><b>Left:</b> Typical development in stem cells (top panel A) and mature cells (bottom panel B). Healthy hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells (stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem cell mutates without repairing mechanisms, a slowly increasing exponential growth starts. At a certain stage, the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline. Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an approximately exponential increase in the MPN stem cells, and the development is closely followed by the mature MPN cells. <b>Right:</b> B)The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV, and PMF, respectively) defined as the ratio of MPN mature cells to the total number of mature cells.</p

    A Novel Homozygous KLHL3 Mutation as a Cause of Autosomal Recessive Pseudohypoaldosteronism Type II Diagnosed Late in Life

    No full text
    Introduction: Pseudohypoaldosteronism type II (PHA II) is a Mendelian disorder, featuring hyperkalemic acidosis and low plasma renin levels, typically associated with hypertension. Mutations in WNK1, WNK4, CUL3, and KLHL3 cause PHA II, with dominant mutations in WNK1, WNK4, and CUL3 and either dominant or recessive mutations in KLHL3. Fourteen families with recessive KLHL3 mutations have been reported, with diagnosis at the age of 3 months to 56 years, typically in individuals with normal kidney function. Methods: We performed clinical and genetic investigations in a patient with hyperkalemic hypertension and used molecular dynamics simulations, heterologous expression in COS7 cells, and Western blotting to investigate the effect of a KLHL3 candidate disease mutation on WNK4 protein expression. Results: The patient, a 58-year-old woman from a consanguineous family, showed hypertension, persistent hyperkalemic acidosis associated with severe muscle pain, nephrolithiasis, chronic kidney disease (CKD), and coronary heart disease. Therapy with hydrochlorothiazide corrected hyperkalemia, hypertension, and muscle pain. Genetic analysis revealed a homozygous p.Arg431Trp mutation at a highly conserved KLHL3 position. Simulations suggested reduced stability of the mutant protein, which was confirmed by Western blot. Compared with wild-type KLHL3, cotransfection of p.Arg431Trp KLHL3 led to increased WNK4 protein levels, inferred to cause increased NaCl reabsorption via the thiazide-sensitive carrier and PHA II. Conclusions: Even in patients presenting late in life and in the presence of CKD, PHA II should be suspected if renin levels are low and hyperkalemic acidosis and hypertension are inadequate for CKD stage, particularly in the presence of a suspicious family histor
    corecore