19,162 research outputs found

    Compact artificial hand

    Get PDF
    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it

    Some Comments on Gravitational Entropy and the Inverse Mean Curvature Flow

    Get PDF
    The Geroch-Wald-Jang-Huisken-Ilmanen approach to the positive energy problem to may be extended to give a negative lower bound for the mass of asymptotically Anti-de-Sitter spacetimes containing horizons with exotic topologies having ends or infinities of the form Σg×R\Sigma_g \times {\Bbb R}, in terms of the cosmological constant. We also show how the method gives a lower bound for for the mass of time-symmetric initial data sets for black holes with vectors and scalars in terms of the mass, Z(Q,P)|Z(Q,P)| of the double extreme black hole with the same charges. I also give a lower bound for the area of an apparent horizon, and hence a lower bound for the entropy in terms of the same function Z(Q,P)|Z(Q,P)|. This shows that the so-called attractor behaviour extends beyond the static spherically symmetric case. and underscores the general importance of the function Z(Q,P)|Z(Q,P)|. There are hints that higher dimensional generalizations may involve the Yamabe conjectures.Comment: 13pp. late

    Generalized entropy and Noether charge

    Get PDF
    We find an expression for the generalized gravitational entropy of Hawking in terms of Noether charge. As an example, the entropy of the Taub-Bolt spacetime is calculated.Comment: 6 pages, revtex, reference correcte

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin

    Alternative experimental evidence for chiral restoration in excited baryons

    Full text link
    Given existing empirical spectral patterns of excited hadrons it has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature/density (effective symmetry restoration). If correct, this implies that mass generation mechanisms and physics in excited hadrons is very different as compared to the lowest states. One needs an alternative and independent experimental information to confirm this conjecture. Using very general chiral symmetry arguments it is shown that strict chiral restoration in a given excited nucleon forbids its decay into the N \pi channel. Hence those excited nucleons which are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only "weakly" decay into the N \pi channel, (f_{N^*N\pi}/f_{NN\pi})^2 << 1. However, those baryons which have no chiral partner must decay strongly with a decay constant comparable with f_{NN\pi}. Decay constants can be extracted from the existing decay widths and branching ratios. It turnes out that for all those well established excited nucleons which can be classified into chiral doublets N_+(1440) - N_-(1535), N_+(1710) - N_-(1650), N_+(1720) - N_-(1700), N_+(1680) - N_-(1675), N_+(2220) - N_-(2250), N_+(?) - N_-(2190), N_+(?) - N_-(2600), the ratio is (f_{N^*N\pi}/f_{NN\pi})^2 ~ 0.1 or much smaller for the high-spin states. In contrast, the only well established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the N\pi channel that is comparable with f_{NN\pi}. This gives an independent experimental verification of the chiral symmetry restoration scenario.Comment: 4 pp. A new footnote with an alternative proof of impossibility of parity doublet decay into pi + N is added. To appear in Phys. Rev. Let

    Numerical indications of a q-generalised central limit theorem

    Get PDF
    We provide numerical indications of the qq-generalised central limit theorem that has been conjectured (Tsallis 2004) in nonextensive statistical mechanics. We focus on NN binary random variables correlated in a {\it scale-invariant} way. The correlations are introduced by imposing the Leibnitz rule on a probability set based on the so-called qq-product with q1q \le 1. We show that, in the large NN limit (and after appropriate centering, rescaling, and symmetrisation), the emerging distributions are qeq_e-Gaussians, i.e., p(x)[1(1qe)β(N)x2]1/(1qe)p(x) \propto [1-(1-q_e) \beta(N) x^2]^{1/(1-q_e)}, with qe=21qq_e=2-\frac{1}{q}, and with coefficients β(N)\beta(N) approaching finite values β()\beta(\infty). The particular case q=qe=1q=q_e=1 recovers the celebrated de Moivre-Laplace theorem.Comment: Minor improvements and corrections have been introduced in the new version. 7 pages including 4 figure

    Flavor Delta(54) in SU(5) SUSY Model

    Full text link
    We design a supersymmetric SU (5) GUT model using \Delta (54), a finite non-abelian subgroup of SU (3)f . Heavy right handed neutrinos are introduced which transform as three-dimensional repre-sentation of our chosen family group. The model successfully reproduces the mass hierarchical mass structures of the Standard Model, and the CKM mixing matrix. It then provides predictions for the light neutrino with a normal hierarchy and masses such that m{\nu},1 \approx 5\times10-3 eV, m{\nu}, 2 \approx 1\times 10-2 eV, and m{\nu},3 \approx 5 \times 10-2 eV. We also provide predictions for masses of the heavy neutrinos, and correc- tions to the tri-bimaximal matrix that fit within experimental limits, e.g. a reactor angle of -7.31o. A simple modification to our model is introduced at the end and is shown to also produce predictions that fall well within those limits.Comment: 22 page
    corecore