258 research outputs found

    Coupled Cluster Treatment of the Shastry-Sutherland Antiferromagnet

    Full text link
    We consider the zero-temperature properties of the spin-half two-dimensional Shastry-Sutherland antiferromagnet by using a high-order coupled cluster method (CCM) treatment. We find that this model demonstrates various groundstate phases (N\'{e}el, magnetically disordered, orthogonal dimer), and we make predictions for the positions of the phase transition points. In particular, we find that orthogonal-dimer state becomes the groundstate at J2d/J1∼1.477{J}^{d}_2/J_1 \sim 1.477. For the critical point J2c/J1J_2^{c}/J_1 where the semi-classical N\'eel order disappears we obtain a significantly lower value than J2d/J1J_2^{d}/J_1, namely, J2c/J1{J}^{c}_2/J_1 in the range [1.14,1.39][1.14, 1.39]. We therefore conclude that an intermediate phase exists between the \Neel and the dimer phases. An analysis of the energy of a competing spiral phase yields clear evidence that the spiral phase does not become the groundstate for any value of J2J_2. The intermediate phase is therefore magnetically disordered but may exhibit plaquette or columnar dimer ordering.Comment: 6 pages, 5 figure

    Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain

    Full text link
    We study the T=0T=0 frustrated phase of the 1D1D quantum spin-12\frac 12 system with nearest-neighbour and next-nearest-neighbour isotropic exchange known as the Majumdar-Ghosh Hamiltonian. We first apply the coupled-cluster method of quantum many-body theory based on a spiral model state to obtain the ground state energy and the pitch angle. These results are compared with accurate numerical results using the density matrix renormalisation group method, which also gives the correlation functions. We also investigate the periodicity of the phase using the Marshall sign criterion. We discuss particularly the behaviour close to the phase transitions at each end of the frustrated phase.Comment: 17 pages, Standard Latex File + 7 PostScript figures in separate file. Figures also can also be requested from [email protected]

    Strong and weak coupling limits in optics of quantum well excitons

    Get PDF
    A transition between the strong (coherent) and weak (incoherent) coupling limits of resonant interaction between quantum well (QW) excitons and bulk photons is analyzed and quantified as a function of the incoherent damping rate caused by exciton-phonon and exciton-exciton scattering. For confined QW polaritons, a second, anomalous, damping-induced dispersion branch arises and develops with increasing damping. In this case, the strong-weak coupling transition is attributed to a critical damping rate, when the intersection of the normal and damping-induced dispersion branches occurs. For the radiative states of QW excitons, i.e., for radiative QW polaritons, the transition is described as a qualitative change of the photoluminescence spectrum at grazing angles along the QW structure. Furthermore, we show that the radiative corrections to the QW exciton states with in-plane wavevector approaching the photon cone are universally scaled by an energy parameter rather than diverge. The strong-weak coupling transition rates are also proportional to the same energy parameter. The numerical evaluations are given for a GaAs single quantum well with realistic parameters.Comment: Published in Physical Review B. 29 pages, 12 figure

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    Get PDF
    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data

    Sign Rules for Anisotropic Quantum Spin Systems

    Full text link
    We present new and exact ``sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive-definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the effects of sign rules in variational calculations and quantum Monte Carlo calculations are considered. They are illustrated by a simple variational treatment of a one-dimensional anisotropic spin model.Comment: 4 pages, 1 ps-figur

    Surface acoustic wave attenuation by a two-dimensional electron gas in a strong magnetic field

    Full text link
    The propagation of a surface acoustic wave (SAW) on GaAs/AlGaAs heterostructures is studied in the case where the two-dimensional electron gas (2DEG) is subject to a strong magnetic field and a smooth random potential with correlation length Lambda and amplitude Delta. The electron wave functions are described in a quasiclassical picture using results of percolation theory for two-dimensional systems. In accordance with the experimental situation, Lambda is assumed to be much smaller than the sound wavelength 2*pi/q. This restricts the absorption of surface phonons at a filling factor \bar{\nu} approx 1/2 to electrons occupying extended trajectories of fractal structure. Both piezoelectric and deformation potential interactions of surface acoustic phonons with electrons are considered and the corresponding interaction vertices are derived. These vertices are found to differ from those valid for three-dimensional bulk phonon systems with respect to the phonon wave vector dependence. We derive the appropriate dielectric function varepsilon(omega,q) to describe the effect of screening on the electron-phonon coupling. In the low temperature, high frequency regime T << Delta (omega_q*Lambda /v_D)^{alpha/2/nu}, where omega_q is the SAW frequency and v_D is the electron drift velocity, both the attenuation coefficient Gamma and varepsilon(omega,q) are independent of temperature. The classical percolation indices give alpha/2/nu=3/7. The width of the region where a strong absorption of the SAW occurs is found to be given by the scaling law |Delta \bar{\nu}| approx (omega_q*Lambda/v_D)^{alpha/2/nu}. The dependence of the electron-phonon coupling and the screening due to the 2DEG on the filling factor leads to a double-peak structure for Gamma(\bar{\nu}).Comment: 17 pages, 3 Postscript figures, minor changes mad

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    Histamine receptor activation by unsaturated (allyl and propargyl) homologs of histamine

    Full text link
    The spectrum of agonist activity for three new homologs of histamine (cis- and trans-imidazolylallylamine and imidazolylpropargylamine) was evaluated in the isolated guinea pig ileum and right atrium. The homologs were about three log units less potent than histamine in stimulating contractions of the longitudinal muscles of the ileum, but they were histamine-like, pharmacologically, because they were sensitive to blockade by pyrilamine and resistant to blockade by atropine. In the right atrium, these weak agonists were partially sensitive to blockade by cimetidine. The agonist activity of the cis-isomer in particular was completely blocked by a combination of cimetidine and propranolol, but resistant to reserpine treatment (neuronal catecholamine depletion). Therefore, these homologs of histamine have the ability to stimulate H 1 - and H 2 -histamine receptors and beta -adrenoreceptors in vitro .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44880/1/11_2005_Article_BF01966582.pd
    • …
    corecore