11 research outputs found

    Can hyperspectral techniques improve estimates of carbon stocks in agricultural soils ?

    Full text link
    peer reviewedSoil organic carbon (SOC) represents one of the major pools in the global carbon cycle. However, fluxes of CO2 from soils into the atmosphere by respiration or inversely sequestration of CO2 through photosynthesis and subsequent immobilisation in the form of humus are difficult to quantify. In principle changes in SOC stock over time reflect CO2 fluxes. The detection of these stock changes, however, require intensive sampling mainly due to the large spatial variability of SOC both within individual fields and larger units with similar soils and land use. The aim of this paper is to evaluate the potential of airborne-hyperspectral techniques using a CASI sensor and hand held Near Infrared Spectroscopy (NIRS) with an ASD spectrometer to conduct SOC inventories of individual parcels. During a field campaign in the Belgian Ardennes during Octobre 2003, more than 120 sites on a regular grid within 13 freshly ploughed fields were selected. At these sites, field spectra of the bare soil have been measured and samples from the topsoil were taken. SOC content (Walkley and Black), soil moisture and bulk density of these samples have been determined. As a first step, the soil reflectance has been transformed (log (1/R), Savitsky-Golay smoothing and derivative, gap derivative, moving average) in order to filter the spectral responses and to eliminate noise. Then, we used both stepwise and partial least square (PLS) regression analysis to relate these spectra to measured SOC contents. Regression models performed much better when the data were divided in two sub-groups representing different moisture conditions of the soil surface. These statistical model calibrations were validated on an independent data set. Standard Error of Prediction (SEP) ranged from 0.19 to 0.24 % carbon for the field spectra determined using the ASD depending on soil moisture of the surface layer. This is a little bit more than the reproducibility error inherent to the Walkley and Black analysis. Airborne CASI techniques performed less well mainly due to the narrow spectral range. Tests on airborne CASI+SASI hyperspectral data from a previous field campaign [1] showed better results. Overall, low bias allowed the use of spectral techniques to estimate population means with a high confidence level. The spectral techniques have a strong potential in determining changes in carbon tock change studies. The large within field variability of SOC content precludes the assessment, using conventional soil sampling, of SOC changes as a result of management (1 t C ha-1 yr-1) over a reasonable time period (5 years). Depending on the variance of the SOC content measured in the field ( 2 = 11-166 t C ha-1), we need 16-210 samples to detect a change. Since this number of samples is rarely available for individual fields, conventional sampling methods can only be used for larger spatial units containing many fields. In contrast, the airborne-hyperspectral technique and portable NIRS are able to supply these large amounts of data, and can thus improve the accuracy of SOC stock assessments of individual fields. This in turn will result in a smaller detection limit of SOC stock changes

    Using stable isotope analysis (delta D-delta O-18) to characterise the regional hydrology of the Sierra de Gador, south east Spain

    No full text
    Water stress is rapidly increasing in many Mediterranean coastal zones mainly due to expansion in agriculture and tourism. In this paper, we focus on the Sierra de Gador-Campo de Dalias aquifer system (southeastern Spain) in order to assess the capability of water stable isotope analysis (deltaD-delta(18)O) to refine the understanding on recharge of this karstic aquifer system. Different types of surface and groundwater were sampled along an altitudinal gradient from the recharge zone in the mountains to the coastal plain. Surface water is restricted to local runoff, collected in closed reservoirs. Runoff amounts, collected in three of these reservoirs were monitored together with the precipitation in their catchments. Meteorological maps were used to detect the origin of the precipitation generating the majority of the runoff. The results were compared to literature data on local and regional precipitation. The use of oxygen and hydrogen isotopic composition has proved to be a useful tool to explain the origin of groundwater in a Mediterranean karstic system. Such studies are, however, not numerous and are often limited to local scale recharge for fast-reacting systems. This paper focuses on the delta(18)O-deltaD relationships of local precipitation to explain the isotopic variability of a large karstic aquifer system. The isotopic compositions of groundwater sampled along an altitudinal gradient from the recharge zone to the coastal plain are well displayed, in a deltaD-delta(18)O diagram, on a mixing line connecting a pole of Mediterranean waters to a pole of Atlantic waters. The Atlantic signature predominates in the shallow groundwater of natural springs, reflecting the rainfall which produced the local runoff sampled. The Mediterranean signature is mainly restricted to deep groundwater from boreholes in the coastal plain. The existence of a degree of spatial separation of groundwater types demonstrates that groundwater flow in a complex karstic system is not always continuous. The Mediterranean signature of deep groundwater could be due to past extreme rainfall events during which connectivity between recharge and reservoir exists, while at the same time the Atlantic signature of recent winter rains dominates in shallow groundwater. The assumption that an equilibrium in isotopic composition is established within a continuous aquifer and that therefore a slope lower than 8 in a deltaD-delta(18)O diagram indicates evaporation is not necessarily valid. (C) 2002 Elsevier Science B.V. All rights reserved

    Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: the case of Molinos cave (Teruel, NE Spain)

    Get PDF
    The interpretation of stable isotopes in speleothems in terms of past temperature variability or precipitation rates requires a comprehensive understanding of the climatic factors and processes that influence the δ18O signal in the way through the atmosphere to the cave, where carbonate precipitates acquiring its final isotopic composition. This study presents for the first time in the Iberia Peninsula an integrated analysis of the isotopic composition of rainfall (δ18Op) during 2010–2012 years and, through a detailed monitoring survey, the transference of the primary isotopic signal throughout the soil and epikarst into the Molinos cave (Teruel, NE Spain). Both air temperature and amount of precipitation have an important effect on δ18Op values, clearly imprinting a seasonal variability modulated by an amount effect when rainfall events are more frequent or intense. Air mass history and atmospheric circulation influences are considered through the study of weather types, synoptic-scale climate patterns and large-scale atmospheric circulation indexes (North Atlantic Oscillation and Western Mediterranean Oscillation) revealing a dominant source effect on δ18Op values in this region where tropical North Atlantic and Western Mediterranean are the two moisture source regions. A delay of 2–3 months occurs between the dripwater oxygen isotopic composition (δ18Od) respect to δ18Op values as a consequence of large residence time in the epikarst. Limited calcite precipitates are found from winter to spring when δ18Od values are less negative and dripwater rates are constant. This study suggests that NE Iberian δ18Ocalcite proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall and, if extending present-day situation towards the recent past, a biased signal towards winter values should be expected in Molinos speleothem records
    corecore