

1	
2	Climate controls on rainfall isotopes and their effects on cave drip water and
3	speleothem growth: the case of Molinos cave (Teruel, NE Spain)
4	
5	Ana Moreno ¹ , Carlos Sancho ² , Miguel Bartolomé ^{1,2} , Belén Oliva-Urcia ¹ , Antonio Delgado-
6	Huertas ³ , Mª José Estrela ⁴ , David Corell ⁴ , Juan Ignacio López-Moreno ¹ , Isabel Cacho ⁵
7	
8	¹ Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology – CSIC, Avda.
9	Montañana 1005, 50059 Zaragoza, Spain. <u>amoreno@ipe.csic.es</u> ; <u>mbart@ipe.csic.es</u> ; <u>nlopez@ipe.csic.es</u> ;
10	<u>boliva@ipe.csic.es</u>
11	² Earth Sciences Department, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
12	<u>csancho@unizar.es</u>
13	³ Stable Isotope Biogeochemistry Laboratory, IACT-CSIC, Avda. de Las Palmeras nº 4, 18100, Armilla
14	(Granada) Spain <u>antonio.delgado@csic.es</u>
15	⁴ Instituto Universitario Centro de Estudios Ambientales del Mediterráneo (CEAM) C/Charles Darwin, 14
16	46980 Paterna (Valencia) Spain <u>dacocus@ceam.es</u> ; <u>estrela@ceam.es</u>
17	⁵ CRG Marine Geosciences, Department of Stratigraphy, Paleontology and Marine Geosciences, Faculty of
18	Geology, University of Barcelona, C/Martí i Franqués, s/nº, 08028 Barcelona, Spain <u>icacho@ub.edu</u>
19	
20	
21	
22	

23 Abstract

24 The interpretation of stable isotopes in speleothems in terms of past temperature variability or 25 precipitation rates requires a comprehensive understanding of the climatic factors and 26 processes that influence the δ^{18} O signal in the way through the atmosphere to the cave, where 27 carbonate precipitates acquiring its final isotopic composition. This study presents for the first 28 time in the Iberia Peninsula an integrated analysis of the isotopic composition of rainfall ($\delta^{18}O_n$) 29 during 2010-2012 years and, through a detailed monitoring survey, the transference of the 30 primary isotopic signal throughout the soil and epikarst into the Molinos cave (Teruel, NE 31 Spain). Both air temperature and amount of precipitation have an important effect on $\delta^{18}O_n$ 32 values, clearly imprinting a seasonal variability modulated by an amount effect when rainfall 33 events are more frequent or intense. Air mass history and atmospheric circulation influences 34 are considered through the study of weather types, synoptic-scale climate patterns and large-35 scale atmospheric circulation indexes (North Atlantic Oscillation, NAO, and Western 36 Mediterranean Oscillation, WeMOi) revealing a dominant source effect on $\delta^{18}O_n$ values in this 37 region where tropical North Atlantic and Western Mediterranean are the two moisture source 38 regions. A delay of 2-3 months occurs between the dripwater oxygen isotopic composition 39 $(\delta^{18}O_d)$ respect to $\delta^{18}O_p$ values as a consequence of large residence time in the epikarst. 40 Limited calcite precipitates are found from winter to spring when $\delta^{18}O_d$ values are less negative and dripwater rates are constant. This study suggests that NE Iberian $\delta^{18}O_{calcite}$ proxy records 41 42 are best interpreted as reflecting a combination of parameters, not just paleotemperature or 43 paleorainfall and, if extending present-day situation towards the recent past, a biased signal 44 towards winter values should be expected in Molinos speleothem records.

45

46 Keywords: Oxygen isotopes, rainfall, cave monitoring, Iberian Peninsula

47

48 **1. Introduction**

49

Speleothems are calcium carbonate deposits which can be precisely dated and provide accurate information of climate change in the past, mostly throughout the routinely measured oxygen and carbon isotope records. However, the δ^{18} O signal of speleothem calcite is influenced by temperature and δ^{18} O_p, mainly affected by atmospheric, soil and cave processes, making the untangling of the climate contributions to the records a challenging task. Thus, the δ^{18} O signal of speleothem calcite is affected by (i) the δ^{18} O value of the drip water feeding the stalagmite and (ii) isotope fractionation processes occurring during calcite precipitation. 57 Understanding the relationships between speleothem stable isotopes and, on one hand, in situ 58 cave forcing mechanisms and, on the other hand, climatic processes that control fractionation 59 of oxygen isotopes in rainfall, and later on dripwaters, is essential to properly interpret 60 stalagmite paleoclimate records (Dansgaard 1964; Rozanski et al. 1993; Darling et al. 2006; 61 Lachniet 2009). In addition, since the δ^{18} O signal preserved in speleothems is site-specific and 62 complicated by numerous phase changes and possible kinetic isotope effects, studies on local 63 and regional hydrology and climatology are required for every karstic system under 64 investigation to confidently disentangle the paleoclimatic signal from other local influences 65 (Caballero et al. 1996; Mattey et al. 2008; Breitenbach et al. 2010).

66

Unfortunately, interpreting stalagmite δ^{18} O records is still one of the complex tasks in 67 68 speleothem research due, in part, to the insufficiency of paleoclimate studies that include investigations of the modern climate - δ^{18} O on precipitation (δ^{18} O_p) relationship (Treble et al. 69 70 2005; Baldini et al. 2010). The stable isotopes of hydrogen and oxygen in precipitation are an 71 integrated product of both the history of an air mass and specific prevailing meteorological 72 conditions (temperature, amount of precipitation) at the time of condensation (Craig 1961; 73 Dansgaard 1964). In fact, precipitation samples collected on the per-event basis reveal an 74 especially strong linkage between their isotope signature and the storm's path, structure and 75 evolution, suggesting in some cases that atmospheric circulation can be the leading cause of 76 isotopic variability (Rozanski et al. 1993). In the Northern Hemisphere, the North Atlantic 77 Oscillation (NAO) is the dominant mode of inter-annual atmospheric variability and a clear 78 influence on the isotopic composition of rainfall was previously established (Baldini et al. 79 2008). For the Mediterranean region, the Western Mediterranean Oscillation index (WeMOi; 80 (Martin-Vide and Lopez-Bustins 2006) has to be explored as another source of variability. 81 Although isotopic data on precipitation have been collected since the 1960s on the framework 82 of the International Atomic Energy Agency (<u>http://www-naweb.iaea.org/napc/ih/index.html</u>), 83 the spatial coverage of the stations is still weak together with the scarcity of sites where 84 rainfall isotopes are measured at a per-event basis. As an example, in the Iberian Peninsula, 85 event $\delta^{18}O_{p}$ data are available only in Madrid and in El Rayo (Canary Islands) although at both 86 stations cover very short periods (Araguás-Araguás and Diaz Teijeiro 2005).

87

The δ^{18} O signal of cave drip water ($\delta^{18}O_d$) is not only affected by the range of variation of $\delta^{18}O_p$ but also by two more factors to be taken into account. First, processes occurring in the soil and epikarst above the cave, such as averaging meteoric water of several months or the recycling 91 of seepage water by evapotranspiration (Wackerbarth et al. 2012). These processes strongly 92 depend on the type of vegetation above the cave and the constitution of the soil (Lachniet 93 2009). Second, the seasonality of meteoric precipitation may cause the $\delta^{18}O_d$ values to be 94 biased towards the $\delta^{18}O$ signal of the season with the highest contribution to the annual 95 amount of meteoric precipitation (Cruz et al. 2006). Importantly, all those considerations have 96 an effect on the transference of the isotopic signal from the cave drip waters to the 97 speleothems with potentially significant consequences on the paleoclimate interpretation.

98

99 The present study integrates rainfall and dripwater isotopic data from a touristic cave, Molinos 100 Cave, located in Northeastern Iberian Peninsula. The monitoring study was conducted from 101 February 2010 to October 2012 and investigates (1) the relative influence of meteorological 102 variables (precipitation amount and temperature), atmospheric circulation and moisture 103 source region on event $\delta^{18}O_p$ values and (2) the transference of the isotopic signal from the 104 atmosphere first to dripwaters and later to calcite precipitates in the cave. The influence of 105 large-scale atmospheric circulation patterns, such as the NAO or the WeMO indexes is 106 evaluated together with the analysis of the three synoptic types that lead to rainfall in the 107 study area. The lack of similar studies in the Iberian Peninsula, particularly the detailed 108 analyses of rainfall $\delta^{18}O_{p}$ variability at per-event basis (Delgado-Huertas et al. 1991; Araguás-109 Araguás and Diaz Teijeiro 2005), and the growing number of speleothem records from that 110 region make especially relevant the results obtained throughout this two-year monitoring 111 study.

112

- 113 2. Site description and climate setting
- 114

115 The Grutas de Cristal or Graderas Cave (Molinos, Teruel) (40°47'33"N; 0°26'57"W; 1050 m 116 a.s.l.) is a small touristic cave located in the eastern Iberian Ranges, an alpine intraplate 117 orogene in Northeastern Iberia (Fig. 1A). The cave is situated in the Maestrazgo basin linking 118 the Iberian Ranges and the Catalonian Coastal Ranges. Geological bedrock is made of Upper 119 Triassic-Jurasic limestones, Lower Cretaceous detrital rocks and Upper Cretaceous limestones 120 and dolostones. These materials are affected mainly by NE-SW trending folds and thrusts and 121 NW-SE faults. Tertiary conglomerates, sandstones and mudstones overlie the Mesozoic 122 sequence. Particularly, the cave is excavated in limestones and dolostones Cenomanien-123 Turonian in age with a 40° dip to the SE (Canerot and Pignatelli 1979) (Fig. 1B).

125 Landscape is dominated by high altitude remnants of planation surfaces. The final stage of 126 planation, during Pliocene time, is accompanied by intensive karst processes leading large 127 fields of dolines and poljes. Surprisingly, scarce endokarstic systems were developed. The 128 subsequent Quaternary fluvial incision triggered the lowering of regional water table and the 129 emergence of structural landforms. One of the endokarstic features in the Iberian Ranges is 130 the Molinos Cave. It is formed by two horizontal galleries (upper and lower) with a total length 131 of 620 meters including several rooms and halls. Although the speleothems are spectacular, 132 erosive features are also observed towards the top of the cavity, likely associated to a previous 133 phreatic phase.

134

135 The study area is characterized today by a Mediterranean climate, with an annual average 136 temperature of 12-13 °C with a highly contrasted seasonality (very hot summers – averaged 137 maximum temperatures around 30°C - and very cold winters - averaged minimum 138 temperature around 0°C) and 500 mm of total annual precipitation, occurring mainly in spring 139 and in fall. In Fig. 1C, monthly temperature and precipitation data from a nearby location 140 (Gallipuén reservoir, Fig. 1B) averaged over five years are plotted in an ombrothermic diagram. 141 Rainfall is controlled by the westerly winds associated with cold fronts, mostly in winter and 142 spring. During the summer the subtropical Azores anticyclone blocks moisture from the west. 143 However, also during summer and at the beginning of the fall, high-intensity (highly 144 convective) storms typically occur. Winter precipitation is influenced by the NAO index: higher 145 rainfall occurs when NAO is low and the westerly belt is located southwards, directly 146 influencing the Iberian Peninsula (Trigo et al. 2002). Recent studies have shown a Pearson's 147 coefficient of -0.4 between the NAO index and winter rainfall on the studied region (Fig. 4 in 148 Lopez-Bustins et al. 2008).

149

150 At present-day, soil development is scarce and the limestone thickness above the cave is 151 around 10 meters. As a consequence of the poor soil development, the high erosion rates and 152 the intense human impact during centuries (mainly grazing activities), vegetation cover is 153 really low in the area. The result is an open landscape dominated by heliophytic shrubs 154 (Quercus coccifera, Thymus vulgaris, Rosmarinus officinalis, Lavandula spp., Salvia spp., 155 Genista scorpius, etc.,) and isolated supramediterranean evergreen oaks (Quercus 156 rotundifolia), including scarce marcescent types like Quercus faginea in humid gorges and 157 shaded exposures.

158

159 **3. Sampling and analytical methods**

161 3.1. Rainfall control and cave monitoring

162

Precipitation was sampled every rainfall event during the monitoring study in the vicinity locality of Molinos (Teruel) and analyzed for isotopic composition. The events sampled over the study spanned 144 rain days, from January 2010 to October 2012. Due to logistical restrictions, we conducted event-sampling only without volume and/or time integration. Rainfall amount and temperature (maximum and minimum) were obtained at a daily basis from SAIH meteorological station (<u>http://195.55.247.237/saihebro/</u>) located in Gallipuén, a nearby reservoir (Fig. 1, Table 1, Electronic supplementary material).

170

171 Cave environmental monitoring has been carried out since January 2010 with continuous 172 logging of temperature, humidity, drip rates and pCO₂ values using HOBO sensors. At a 173 monthly basis, dripwater was manually collected at two locations in the cave (upper and lower 174 galleries), and, weekly, using a custom designed battery powered device that autonomously 175 collect dripwater (Electronic supplementary material). Dripwater samples were filtered and 176 stored refrigerated at 4°C for stable isotopes analyses. In addition, seasonal dripwater samples 177 were taken for temperature and chemical composition (pH, conductivity, alkalinity, SO4=, Cl-, 178 Ca2+, Mg2+, Na+ and K+) in order to evaluate the calcite saturation index throughout the year 179 (Table 4A).

180

Several glass and limestone slabs were placed in the cave at different dripwater points that potentially could precipitate carbonate. These artificial supports were checked monthly during three years (2010-2012) for calcite precipitation, sampled when precipitates were observed and analyzed for stable isotopes (Table 4B).

185

186 3.2. Isotope analyses

187

The isotopic composition of oxygen and hydrogen in water (rainfall and dripwater), expressed as δ^{18} O and δ D‰ V-SMOW, respectively, was analyzed by using a Finningan Delta Plus XL mass spectrometer at the IACT-CSIC in Granada. Water samples were equilibrated with CO₂ for the analysis of δ^{18} O values (Epstein and Mayeda, 1953), while the hydrogen isotopic ratios were measured on H₂ produced by the reaction of 10 µL of water with metallic zinc at 500 °C, following the analytical method of Coleman et al. (1982). The analytical error for δ^{18} O and δ D was ±0.1 and ±1‰, respectively.

196 Oxygen and carbon stable isotopes analyses on calcite precipitates were analyzed with a 197 Thermo Finnigan MAT252 mass spectrometer coupled with a CarboKiel-II carbonate 198 preparation device at the Scientific and Technological Centers form the University of 199 Barcelona. Analytical precision was estimated to be better than 0.03‰ for δ^{13} C and 0.08‰ for 200 δ^{18} O by measuring the certified standard NBS-19. Isotope results are reported in standard 201 delta notation relative to Vienna Peedee Belemnite scale (V-PDB).

202

203 3.3. Weather types calculation and synoptic-scale climate disaggregation

204

205 Daily weather types over the Iberian Peninsula were obtained using the objective weather 206 typing system of Jenkinson and Collison (1977) based on the Lamb types. The method requires 207 information of the daily sea level pressure of the 16 points at 5° of resolution which comprise 208 the Iberian Peninsula (Figure 4 in Trigo and DaCamara 2000). These data were provided by 209 NCAR (National Center for Atmospheric Research), from a gridded analysis of SLP based on 210 land station reports, covering 1899 to present for latitudes 30°N-90°N. The Jenkinson and 211 Collison method has been successfully used for daily weather type classification in the Iberian 212 Peninsula (Goodess and Palutikof 1998; Spellman 2000) and its complete formulation can be 213 consulted in Trigo and DaCamara (2000). The result is the discrimination of each day between 214 26 possible weather types: anticyclonic (A), cyclonic (C), eight directional weather types (N, NE, 215 E, SE, S, SW, W and NW) and hybrid types between cyclonic or anticylonic and directional (CN, 216 CNE, CE, CSE, CS, CSW, CW, CNW, AN, ANE, AE, ASE, AS, ASW, AW and ANW). For this 217 particular study, those 26 weather types were simplified in 10 types: anticyclonic (A), cyclonic 218 (C) and 8 more types grouped by their directional character (N, NE, E, SE, S, SW, W and NW).

219

220 An additional method to describe the origin of rainfall in our study region was based on the 221 previous work published by Millán et al. (2005) where precipitation data were disaggregated 222 by synoptic types, analysing surface pressure maps at 0000, 0600, 1200, and 1800 UTC, 223 together with the 500- and 300-hPa levels at 1200 UTC. According to this work, three synoptic 224 situations act as major rainfall inputs in the eastern region of the Iberian Peninsula: Atlantic 225 frontal systems, Mediterranean cyclogenesis ("backdoor" cold fronts) and summer convective 226 situations. An additional type characterized by northern winds is observed as a blocking 227 anticyclone over Central Europe, driving dry continental winds usually without rain over the 228 eastern Iberian Peninsula. With that analysis of rainfall disaggregation, a synoptic situation is 229 assigned to every rainfall event at Molinos location (see Millán et al. 2005, for more details).

4. Results and discussion

233 4.1. Precipitation δ^{18} O and δ D data and dominant effects

234

232

235 Event $\delta^{18}O_p$ values are highly variable, ranging from -15.85 to +1.39‰ (mean = -6.89‰; 2σ = 236 3.54‰; n = 144) and event δD_{p} ranged from -114 to +4.09‰ (mean = -45.84‰; 2σ = 24.81‰; 237 n=144) (Table 1, Fig. 2). $\delta^{18}O_p$ mean values are in the range of rain water of the Iberian 238 Peninsula and other GNIP stations under Mediterranean influence (Delgado-Huertas et al. 239 1991; Plata Bedmar 1994; Longinelli and Selmo 2003; Araguás-Araguás and Diaz Teijeiro 2005; 240 International Atomic Energy Agency 2005) but about 2‰ more negative due to the altitudinal 241 effect. The huge range of $\delta^{18}O_p$ highlighted by the high values of 2σ compared to other 242 Mediterranean locations (Celle-Jeanton et al. 2001), likely responds to the fact that two main 243 sources of precipitation are important at this site: the Atlantic and the Mediterranean, with 244 expected marked differences on $\delta^{18}O_p$ values.

245

246 The Local Meteoric Water Line (LMWL) based on the analyzed 144 rain events is described as 247 $\delta D = 7.05 * (\delta^{18}O) + 3.36$, (r² = 0.92), displaying a slightly lower slope than the Global Meteoric 248 Water Line, GMWL, (Rozanski et al. 1993) and low Deuterium-excess (d) value (3.36) probably 249 due to the presence of samples that suffered evaporation of raindrops below the cloud base, a 250 process significant in semi-arid regions (Araguás-Araguás et al. 2000). Some of those samples 251 (events 22, 98, 102, 103, 139, 140 and 142, enclosed by a circle in Fig. 2) even show $\delta^{18}O_{p}$ 252 positive values (Table 1) and they all correspond to summer months when evaporation during 253 rainfall is possible (Dansgaard 1953; Dansgaard 1961). Similar pattern has been observed in 254 other Mediterranean sites (Morocco, Algeria, Greece, etc) with low d value in their LMWL and 255 particularly low values in summer samples (International Atomic Energy Agency 2005). These 256 seven samples, together with event 46 that plots further than $\pm 2\sigma$ from the LMWL, are the 257 ones with lower d-excess values (from -5.4‰ to -23.3‰; Table 1) confirming the evaporative 258 mechanism. Event 46, together with the evaporated samples, are excluded from further 259 analyses since may be affected by non-equilibrium effects.

260

At Molinos location, due to the latitudinal position and other geographic factors (altitude, orography, etc), we would expect that most precipitation is generated by frontal depressions related to western Atlantic flows. However, convective storms associated with eastern flows 264 and cyclogenetic processes in the Mediterranean basin itself are also common mainly in 265 summer (Celle-Jeanton et al. 2001). Thus, the "source effect" would be one of the main 266 influences in the final $\delta^{18}O_n$ values at Molinos location. This effect is due to the different air 267 mass histories and temperatures of the moisture sources (Craig 1961; Dansgaard 1964; 268 Rozanski et al. 1993; Araguás-Araguás et al. 2000). The Deuterium excess (d = $\delta D - 8^* \delta^{18} O$), 269 since it reflects the relative humidity and the air temperature of the region where the 270 evaporation leading to rainfall occurred (Vandenschrick et al. 2002), is an excellent indicator of 271 the origin of the precipitation (Lachniet 2009). In fact, the particular characteristics of 272 Mediterranean Sea allowed defining a Western Mediterranean Meteoric Water Line that 273 responds to this equation: $\delta D = 8^*$ ($\delta^{18}O$) + 13.7, characterized by the high Deuterium excess 274 values (Celle-Jeanton et al. 2001) (WMMWL, red line in Fig. 2). The LMWL obtained with 275 Molinos rainfall samples intercepts the y-axis with a Deuterium excess value of 3.36, much 276 lower than the 13.7 value in the Western Mediterranean Meteoric Water Line. As explained 277 above, the presence of summer samples with very low d values (Table 1) indicative of the 278 evaporation of falling raindrops in a warm and dry atmosphere (Araguás-Araguás et al. 2000) 279 may be the cause of this apparent contradiction. On the other hand, up to 6 samples (nº 49, 280 57, 63, 64, 66, 67) are indicated in Fig. 2 since they display extremely high values of Deuterium 281 excess (from 23.04‰ to 28.27‰, Table 1). Those samples, all collected in winter, represent 282 processes of recycling of air masses under the polar climatic regime, as was found in other 283 Mediterranean locations (Saighi 2005). In general, rainfall samples collected for this study with 284 intermediate d-excess values (among 0-10‰) correspond both to the entrance of Atlantic 285 fronts in winter (30 days) and to summer convective rainfall in summer (21 days). The 286 explanation for those d-excess values and the observed seasonality (higher values in winter 287 and lower values in summer, Table 1) can be due to two processes, as in many European 288 locations (Rozanski et al. 1993). On one hand, low relative humidity of air in the source region 289 (mostly Atlantic) in winter, would lead to enhanced kinetic fractionation during the 290 evaporation process and, consequently, higher d-excess signature of the vapor. On the other 291 hand, low relative humidity over the continent in summer, caused by the high temperatures, 292 would facilitate partial evaporation of raindrops below the cloud base. This, in turn will lead to 293 reduction of the deuterium excess values of summer rains.

294

295 Variation through time of $\delta^{18}O_p$ values also indicates a seasonal control, with more negative 296 values in fall and winter and more positive in summer (Fig. 3). Surface air temperature clearly 297 influences event $\delta^{18}O_p$ since accelerates the Rayleigh process; this control is known as the 298 "temperature effect". The seasonal cycle generally varies by a few per mil in the low latitudes 299 up to 15‰ in high latitude regions (Rozanski et al. 1993), and may have been enhanced during 300 past glacial periods (Denton et al. 2005). In our studied site, at present-day, the seasonal 301 variation is about 10-12‰ (Fig. 3). Superimposed on the general temperature variation, there 302 are several rainfall events that force an isotopic lightening (indicated by gray arrows in Fig. 3). 303 Those events occur all along the year and are, mostly, the most intense rainfall events (eg. Aug 1st 2010) or those events of longer duration (several days, eg. Nov 20th-23rd, 2011). Therefore, 304 the amount of rainfall, what is called the "amount effect" is modulating $\delta^{18}O_p$ values along the 305 306 year. This result is not surprising since a negative relationship between $\delta^{18}O_p$ and precipitation 307 amount was identified in both observational and modeling studies that, although is generally 308 associated to tropical areas (Fleitmann et al. 2003; Cruz et al. 2006; Wang et al. 2007), is also 309 present in Mediterranean areas (Delgado-Huertas et al. 1991; Longinelli and Selmo 2003).

310

311 To investigate the statistical relationship between $\delta^{18}O_p$ values and these climate variables, 312 Spearman's rank correlation analysis was used. Prior to conduct the correlation analysis we 313 removed the seasonal component of the variables by subtracting their monthly averages in 314 order to avoid sympathetic seasonal correlations (eg. Rozanski et al. 1993) (Table 2). Single-315 predictor correlations reveal that event $\delta^{18}O_{n}$ correlate significantly with air temperature and 316 amount of precipitation along the year, in spite of the Spearman's rank correlation with 317 amount of precipitation all along the year is very low (r_s =-0.19; p<0.05; Table 2). As observed in 318 Fig. 3, $\delta^{18}O_p$ variation seems to be influenced only by the most intense or prolonged rainfall 319 events. Analyzing these correlations at a seasonal scale, we observe that while temperature 320 and $\delta^{18}O_p$ correlation is focused on summer and fall, amount of precipitation correlates with 321 $\delta^{18}O_p$ in winter and spring when rainfall events are larger and more frequent (Table 2, Fig. 3).

322

323 In addition to air temperature and amount of rainfall, important factors affecting $\delta^{18}O_p$ values 324 at Molinos site, we explore here how large-scale variability in atmospheric circulation patterns, 325 what has been called the "source effect", are explaining first-order changes in $\delta^{18}O_p$ values.

- 326
- 327 4.2. Synoptic-scale climate patterns
- 328

329 Previous studies have revealed a synoptic control on event $\delta^{18}O_p$ in Australia, India or Ireland 330 (Treble et al. 2005; Breitenbach et al. 2010; Baldini et al. 2010). To determine if a relationship

331 exists between $\delta^{18}O_p$ recorded in Molinos and the daily synoptic-scale atmospheric circulation

332 pattern, Jenkinson Lamb weather types corresponding to days with rainfall isotopic values 333 were calculated. In Fig. 4, percentages of occurrence of weather type (and percentage of total 334 rainfall represented by each weather type) together with the $\delta^{18}O_{n}$ for every rainfall event are 335 plotted. The most common weather type associated with rainfall in Molinos during the studied 336 time interval was cyclonic (C, in Fig. 4). Rain events associated to C weather type exhibited the 337 greatest $\delta^{18}O_0$ range (-15.85 to 1.39‰). Anticyclonic weather type (A, in Fig. 4) is the following 338 weather type also displaying high variability, with potentially convective events all along the 339 year and with origin on different air masses. Grouping rainfall events by the origin (Eastern or 340 "Mediterranean" weather types – NE-E-SE, vs Western or "Atlantic" weather types – W-NW-N) 341 reveals that both groups of weather type have a distinct isotopic pattern, suggesting the control of the synoptic patterns on the $\delta^{18}O_n$. Thus, rainfall events with a western origin (the 342 343 Atlantic ones) have a $\delta^{18}O_n$ narrow range (-10 to -5‰) compared to the more spread values for 344 the eastern origin (more "Mediterranean" events) with -12 to -2‰. This difference can be 345 potentially attributed to the mixing of synoptic situations that are grouped under the 346 "eastern" group while all rainfall originated in the west (including N-NW-W-SW) responds to 347 very similar synoptic situation of Atlantic fronts and thus, similar $\delta^{18}O_{p}$ values. Unfortunately, 348 for both western and eastern types, there are several particular rainfall events that display 349 δ^{13} O_n outside the more common ranges (eg. rainfall events nº 143, 64, etc) not easy to accept 350 in the presented picture. In addition, this simple classification on "Eastern" and "Western" 351 origins leave behind the cyclonic type that is the dominant mode in terms of number of rainfall 352 events and rainfall amount (Fig. 4). In fact, to clearly determine if these two groups are 353 statistically different we performed a significance test, the Kruskal-Wallis test of analyses of 354 variance using SPSS software. Low test values and p-values always above 0.05 indicate that 355 "Western" and "Eastern" origins are not significantly different in terms of their isotopic 356 composition (Table 3). Another way to discriminate the different air mass trajectories behind a 357 rainfall event is thus implemented.

358

An exercise of synoptic disaggregation was carried out following the procedures established on Millán et al. (2005). Thus, three synoptic types are considered to trigger rainfall in Molinos area: precipitation caused by the entrance of Atlantic fronts (43%), back-door cold fronts (Levanters) (21%), and convective precipitation storms driven by the combined sea breeze and upslope winds (36%). In Fig. 5A, the three situations are illustrated, together with the synoptic pattern characterized by the entrance of northern winds, although this last type does not cause rainfall in Iberia (Millán et al. 2005).

367 Type 1 (top left panel in Fig. 5A) is related to Atlantic depressions sending frontal systems over 368 the Iberian Peninsula. Precipitation from these fronts occurs mainly on the windward (west) 369 side of the Iberian Range where the cave is located and little or no precipitation on the coastal 370 side of those mountains. The passage of a frontal system during the rain event is the main 371 criterion to disaggregate the Atlantic component from the daily precipitation data. This input 372 seems to be the least affected by local and regional mesoscale and feedback processes (Millán 373 et al. 1997). On the contrary, precipitation by Mediterranean cyclogenesis ("backdoor" cold 374 fronts, top right panel in Fig. 5A) involves complex mesoscale convective systems causing 375 intense rainfall in the Spanish east coast. By late summer, the European continent becomes 376 progressively cooler, and the migration of warm-core anticyclones from the central Atlantic 377 toward central Europe begins. Therefore, two relevant situations occur: 1) the Mediterranean 378 Sea reaches its maximum annual temperature, and 2) the northeasterly-to-easterly flows along 379 the southern flanks of the migrating anticyclones begin to advect increasingly colder 380 continental air over a much warmer Mediterranean Sea. Temperature differences between the 381 continental air (cold) and sea surface (hot) cause instability and convective activity that is 382 associated with a vigorous moisture-recharge mechanism leading to very intense rainfall 383 events (Millán et al. 1995). The third category, summer convective situations (bottom left 384 panel in Fig. 5A), refers to orographic or convective storms. The genesis of this precipitation is 385 related to the formation of the Iberian thermal low. By late spring and summer, the Iberian 386 Peninsula becomes relatively isolated from travelling depressions and their frontal systems. An 387 anticyclonic ridge of high pressure becomes established over the Cantabrian Sea while 388 mesometeorological circulations, with marked diurnal cycles, develop over the peninsula. In 389 particular, the thermal low develops during the day when a number of local circulations grow 390 and merge into a self-organized circulatory system at peninsular scale. During the late 391 afternoon, storms tend to develop following the ridges of the coastal mountain ranges and 392 even can reach other mountains in Central Iberia where Molinos cave is located. Thus, rainfall 393 events are attributed to this category whenever the thermal low is observed at 1200 and/or 394 1800 UTC on the day of the event. Additionally, the 500-hPa level is checked for the presence 395 of cold air aloft.

396

397 Interestingly, those three types, particularly the two more abundant ones, have a 398 characteristic $\delta^{18}O_p$ range that can be related to the origin of the air masses. Thus, rainfall 399 deriving from the entrance of Atlantic fronts only occurs from September to April and the 400 $\delta^{18}O_p$ range is between -15.85 to -0.6‰ (average = -7.91; σ =3.14), much more negative than 401 convective rainfalls coming from the Mediterranean that only occur during the other half of 402 the year (from April to September), with a $\delta^{18}O_p$ range is between -10.74 to 1.39 ‰ (average = 403 -4.46; σ =2.97) (Fig. 5B, red and blue lines). The Kruskal-Wallis test applied to these three 404 groups reveals significant differences in the $\delta^{18}O_p$ and δD values, with high test values and p 405 values <0.05 in both cases (Table 3).

406

407 In addition to this "source effect" perfectly described by the different synoptic-scale climate 408 patterns, large-scale changes in atmospheric circulation patterns are generally invoked to 409 explain $\delta^{18}O_p$ interannual variability (Baldini et al. 2008). The location of Molinos cave in 410 between Northern Spain and Mediterranean region makes rainfall at this site potentially 411 influenced by NAO, ENSO and WeMOi modes of variability.

412

413 4.3. Large-scale atmospheric circulation patterns and their possible influences on the rainfall414 isotopic composition

415

416 The Iberian Peninsula receives moisture from two main sources, the tropical-subtropical 417 Atlantic and the immediately surrounding ocean area, principally the Mediterranean Sea. 418 Lagrangian analysis indicates that the importance of these two sources differs regionally and 419 seasonally (Gimeno et al. 2010). Typically, the Tropical-Subtropical Atlantic source is more 420 important in winter and the local Mediterranean more important in summer. For the 421 Mediterranean region of Iberia, local Mediterranean sources supplies roughly 1.5 times more 422 moisture (coming in summer-fall) than are provided from the Atlantic (coming in winter). In 423 contrast, for Northern (Cantabric) regions, moisture supplied from Atlantic (in winter) is 1.5 424 times larger than local moisture supplied from the Mediterranean (in summer). Winter 425 precipitation from Atlantic sources is strongly modulated by the state of the NAO, with NAO 426 negative states favouring stronger winter precipitation from the Atlantic regime (Trigo et al. 427 2002). In more Atlantic regions such as Ireland the NAO explains 20% of $\delta^{18}O_p$ variance (Baldini 428 et al. 2010).

429

430 In contrast to the Atlantic precipitation, locally sourced and especially Mediterranean sourced 431 precipitation, is unrelated to the NAO but shows a modest correlation with the ENSO mode 432 (Rodo et al. 1997). On a seasonal scale, the Nino3.4 index is directly correlated with 433 precipitation anomalies in late summer and early fall (El Niño produces wetter conditions) and 434 inversely correlated with precipitation anomalies in the spring (Mariotti et al. 2002) For our study location, which receives most of its precipitation in spring, we should expect a negative
correlation. The fact that only three spring seasons were in our monitoring period prevents us
from carrying out a significant study of the comparison of ENSO intensity (just three years) and
the isotopic composition of rainfall.

439

440 In addition to these two indexes related to large scale atmospheric conditions, in order to 441 explain precipitation in the western Mediterranean basin another index was developed as a 442 regional teleconnection pattern (López-Bustins 2007). Thus, the Western Mediterranean 443 Oscillation index (WeMOi), based on the pressure dipole of normalized sea level pressure 444 between Southwest Iberian Peninsula (San Fernando, Cádiz, Spain) and Northeast Italy 445 (Padova, Veneto, Italy) as proposed Martin-Vide and Lopez-Bustins (2006), was computed as 446 the difference between the normalized sea level pressure at the 35°N, 5°W and that at the 447 45°N, 10°E, using daily sea level pressure grids from the NCEP-DOE Reanalysis 2 448 (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.surface.html; last 449 accessed 15 July 2013). To normalize the daily pressure data, a mean and standard deviation 450 for each station were calculated using all available days from 1979-2012, following the 451 calculation presented by Lopez-Bustins (2007) after evaluating nine different methods to 452 standardise the WeMOi daily. Close agreement between the daily reanalysis-based WeMOi 453 and the daily station-based WeMOi (López-Bustins 2007) was found with a correlation 454 coefficient of 0.94 for 1979-2000, which supports the use of reanalysis data and allows 455 extending the daily WeMOi to present day. This index is able to explain the pluviometric 456 variability in the eastern fringe of the Iberian Peninsula, an area weakly related to the NAO 457 pattern (Trigo et al. 2004), since it allows the detection of the variability relevant to the 458 cyclogenesis next to the western Mediterranean (Martin-Vide and Lopez-Bustins 2006). 459 Negative values of the WeMOi are correlated to higher precipitation in relation to the entrance 460 of northeasterly flows over eastern Iberia (Lopez-Bustins et al. 2008).

461

Using the Spearman's rank correlation test, we explore if the two main above mentioned indexes (NAO, WeMOi) have an influence not only on the amount of precipitation but more importantly on the isotopic composition of that precipitation (Fig. 6, Table 2). Therefore, to understand the NAO influence on the composition of precipitation over Molinos cave, $\delta^{18}O_p$ values along the two studied years are plotted against the daily NAO index (obtained from <u>http://www.cpc.ncep.noaa.gov</u>) (Fig. 6A). As stated previously, due to the larger influence of NAO phenomenon on winter rainfall in the Iberian Peninsula respect to summer season (Trigo 469 et al. 2002), we would expect a positive correlation (NAO – amount of rainfall), if any, centered 470 on winter season. In Table 2 that correlation is shown as statistically significant only for winter 471 (r_s= 0.55; p=0.01; Table 2). However, regarding to the NAO - $\delta^{18}O_{n}$ relationship, a clear in-phase 472 pattern is observed for years 2011 and 2012 (Fig. 6A, note reversed y-axis in NAO index). This 473 result means that, during certain months, the position and intensity of the high and low 474 pressures in the Atlantic (i.e. Azores High and Icelandic Low) modulates the isotopic value of 475 the rainfall generated. Unfortunately, this pattern is not so well observed during the previous 476 year 2010 thus preventing any clear conclusion, as shown in Table 2 where the Spearman's 477 rank correlation among NAO - $\delta^{18}O_{p}$ appears not significant along the year or for any season 478 (Table 2). These observations may just indicate that NAO has not a very important effect on 479 event $\delta^{18}O_{p}$ along the year at this location and leads us to explore the effect of other indexes, 480 such as WeMOi.

481

482 In Fig. 6B, the WeMOi is plotted together with $\delta^{18}O_p$ suggesting a close similarity. Note that the 483 axis of the WeMOi is plotted with a reversed scale, thus pointing towards an inverse 484 correlation among that index and the isotopic composition of rainfall. Such inverse correlation 485 can be explained by the fact that negative values of the WeMOi are correlated to the entrance 486 of northeasterly flows (Lopez-Bustins et al. 2008), which are characterized by more positive 487 values of $\delta^{18}O_n$ (Fig. 4, "Eastern" group). In Table 2, the Spearman's rank correlation among 488 WeMOi - $\delta^{18}O_p$ is shown. Contrarily to the NAO index, the correlation is significant (r_s= -0.19, 489 p=0.018) indicating a certain control of the WeMOi on the isotopic composition of rainfall, 490 although this mechanism cannot explain by itself the observed variability in $\delta^{18}O_n$. This 491 correlation is stronger in spring and summer, where the entrance of northeasterly flows is 492 observed ("Back-door" cold fronts in Fig. 5).

493

494 Definitively, $\delta^{18}O_p$ variability at this region is controlled by a combination of factors, being the 495 *source effect* the most relevant since it is controlling the dominance of air-masses trajectories 496 with different isotopic ranges. That signal is modulated by temperature and precipitation 497 amount, with special strength in summer-fall and winter-spring, respectively.

498

499 4.4. Hydrological and seasonal effects on dripwater isotopic composition

500

501 Dripwater rates in Molinos cave have been compared to the amount of rainfall (using the data 502 from Gallipuén reservoir meteorological station, 8 km farther north) (Fig. 7; Electronic 503 supplementary material). The amount of dripwater measured in the cave at a fixed location 504 during more than 2 years clearly shows that the increase in dripwater flux occurs at two steps 505 in the hydrological cycle. First, the rainfall that takes place in Oct-Nov, which usually is 506 characterized by several days raining, causes a first small increase in dripwater rates. At that 507 time in fall, the soil is quite dry after extremely warm summers and just a small fraction of 508 precipitation percolates into the epikarst since most of it is used by the vegetation (García-Ruiz 509 et al. 2011). During winter, rainfall is scarce and episodic, but the low temperatures (maximum 510 temperatures below 10 °C for most of Dec-Jan-Feb, Fig.7) prevent any evaporation and most 511 of the rainfall infiltrates into the cave, which allows keeping a constant dripwater rate (10 512 mm/day). Most of rainfall at this location takes part in spring with the consequent impact on 513 dripwater rates. After the "spring peak" in dripwater (above 50 mm/day, May, 2010), there is a 514 trend towards lower values that do not recover until rainfall arrives again in fall. Thus, summer 515 convective rainfall events, in spite of delivering large amount of water (eg. 71 mm the 1st Aug-516 2010), do not influence dripwater rate in the cave (Fig. 7). The most plausible explanation is 517 related to the evaporation in the soil zone that was very intense during summer months in 518 Molinos area, considering maximum temperatures were above 30 °C during July and August. 519 An exception to this annual pattern is the year 2012 when spring rainfall was scarce and took 520 place with warmer temperatures than usual. As a consequence, dripwater flow rate in the cave 521 is extremely low and do not increases as other years during spring (Fig. 7).

522

523 It is well-known that the oxygen isotope composition of dripwater ($\delta^{18}O_d$) reflects seasonality 524 of surface recharge and modification within the soil and epikarst (Lachniet 2009). In Molinos cave, a seasonal control in $\delta^{18}O_d$ variation is observed, recording the lightest values in spring, 525 526 synchronously with the increase in dripwater rate in the cave but asynchronously with the lightest values of the isotope composition of rainfall ($\delta^{18}O_n$) that are recorded in winter (Fig. 8). 527 528 The range of variation in the isotopic composition of driwater is small (2 ‰) compared to the 529 18‰ in $\delta^{18}O_p$ variation, similarly to what has been observed in other monitoring studies 530 (Caballero et al. 1996; Mattey et al. 2008). This is certainly related to the signal attenuation 531 caused by mixing in the soil zone and epikarst. Still, this strong attenuation has not completely 532 homogenized the seasonal $\delta^{18}O_d$ variations at Molinos, contrary to what has been observed in 533 some other cave systems (eg. Corchia Cave, Piccini et al. 2008). The pattern of variation of 534 $\delta^{18}O_d$ in Molinos cave is very systematic throughout the study time interval and in the three 535 dripwater sites monitored in the cave (Fig. 8).

In addition to the different ranges of variation of $\delta^{18}O_{p}$ and $\delta^{18}O_{d}$ time series, they also display 537 538 an asynchrony (Fig. 8). The observed asynchrony may be caused by the transit time of the 539 isotopic signal from the rainfall to the cave dripwaters, caused by the water residence time in 540 the rock above the cave. The extremely thin soil (even absent) together with the small 541 thickness (some 10-20 m) of rock above the cave suggest a rapid infiltration of rainfall waters 542 and a rapid response in terms of drip rate. In fact, the response of the dripwater rate to rainfall 543 amount is very rapid as shown in Fig. 7. However, the transport of the isotopic signal is caused water storage within the rock and may explain the asynchrony among $\delta^{18}O_{o}$ and $\delta^{18}O_{d}$ profiles. 544

545

546 In order to gain some insight into the observed asynchrony when comparing $\delta^{18}O_p$ and $\delta^{18}O_d$ 547 profiles, a simple time series convolution exercise was performed to understand the 548 hydrological controls on the isotopic composition of cave dripwater. A piston-type flow model 549 was applied to $\delta^{18}O_p$ data weighted by effective precipitation (considered here as total 550 precipitation excluding days with maximum temperature over 35°C and precipitation lower 551 than 1 mm) with a lognormal transit time distribution that reflects the distribution of 552 effective hydraulic conductivities of the different flow paths (see Electronic 553 supplementary material). The output of the model, i.e. the modelled $\delta^{18}O_d$, reproduces some of the variability trends of $\delta^{18}O_d$ data. As observed in Fig. 8, the modelled $\delta^{18}O_d$ displays very 554 555 similar trends (minima and maxima are well-reproduced in time and value) and very similar 556 range of variation than the "real" dripwater δ^{18} O profiles. To fit the model and obtain these 557 results a long residence time in the model was required, thus suggesting that groundwater was 558 mixed in the epikarst for long periods (8-10 weeks) before it flows into the cave, coinciding 559 with maxima in the amount of rainfall (e.g. 2010 and 2011 spring season). These results imply that a portion of the variability in the dripwater δ^{18} O time series is described by a piston flow 560 561 model that needs the mixing of waters in the epikarst for a long time (we considered 50 days) 562 with 10 days as the peak in the distribution of arrival times (see Electronic supplementary 563 material).

564

It is also clear that a full explanation of the observed variability requires a much more detailed transport model, accounting not only for mixing during transit through the rock, but also evaporation in the cave, transpiration in the soil and, possibly, dew formation during winter. Understanding the present-day control of rainfall in dripwater rates and how the seasonality influences on the transference of the isotopic signal is crucial to comprehend the information obtained from speleothems in the cave. In fact, the data presented here suggest a possible 571 bias in the season when calcite precipitates. Since dripwater rate is much higher during the 572 beginning of spring than any other season, we may expect calcite formation biased towards 573 that season. However, this hypothesis must be checked with experimentally-growth calcite as 574 will be explained below.

575

576 4.5. Transference of climate signal from dripwaters to calcite precipitates: implications for577 paleoclimate studies

578

579 Hydrochemical results from the four dripwater samples taken along one year in Monlinos cave 580 indicate that calcite can precipitate in the cave all along the year (positive Saturation Index, SI, 581 at dripwater site nº 1; Table 4A) except for winter season (negative SI, Table 4A). However, 582 even for the positive values, the SI values are so close to zero that calcite precipitates not 583 necessarily should be expected from the analyzed dripwaters. In fact, monthly inspections on 584 artificial supports placed at different points in both cave galleries, indicate that calcite 585 precipitates from the end of fall to the beginning of spring (November-April) and only at two 586 particular locations from a total of seven monitored sites: MO-3 (that corresponds to 587 dripwater site 1 where waters have been analyzed with a monthly periodicity) (Table 4B) and 588 MO-5 (no dripwater data due to the height of the corresponding drips). Thus, the available 589 data allow us to explore preliminarily the transference of the isotopic signal from dripwater to 590 calcite precipitates at one sampling location in Molinos cave, MO-3.

591

592 Values of $\delta^{18}O_d$ collected at site nº1 (Fig. 8) range among -8‰ and -10.5 ‰ (V-SMOW), being 593 the winter values the less negative ones. Using different calculations (eg. Kim and O'Neil 1997), 594 we observe that the calcite δ^{18} O values can be almost perfectly reproduced when averaging dripwater values ($\delta^{18}O_d$) for the time interval when calcite precipitates (see Table 4B) and 595 596 considering present-day cave temperature (12°C). The calculated water are slightly less 597 negative that the average (Table 4B) and in equilibrium with the winter values. Only, the 598 sample of 2010 year indicate more evaporated water (about -7.5 ‰ vs V-SMOW), which is 599 compatible with the less negative δ^{13} C values. Additionally, it must be taken into account that 600 dripwaters where $\delta^{18}O_d$ values have been measured may not correspond exactly to the 601 dripwaters from whose calcite is precipitating. Other in-cave processes (evaporation-602 condensation in the artificial support, cave ventilation) may take place slightly modifying the 603 calcite δ^{18} O values. In fact, previous studies have revealed the usual lack of coherence among calcite experimentally growth and $\delta^{18}O_d$ values pointing to the complexity of this process 604

605 (Wackerbarth et al. 2010; Tremaine et al. 2011). Our results here support the findings of other
606 cave investigators that water–calcite fractionation factors observed in speleothem calcite are
607 slightly higher than those measured in laboratory experiments (Mangini et al. 2005; Boch et al.
608 2009).

609

610 Although the number of samples of calcite precipitated over artificial supports is still low, 611 these first results point to a bias in the season when calcite precipitates. Thus, from the 612 studied calcite samples, it is observed that the season when calcite precipitates covers from 613 November to April (Table 4B, Fig. 8), starting with the first increase in dripwater rate (see Fig. 614 7) and ending when usually dripwater rates are at maximum values, likely too diluted to 615 produce calcite precipitation. Calcite is not precipitating in summer, perhaps related to the low 616 dripwater rates reached during that season. These results need to be further supported by 617 more analyzed calcite samples.

618

This monitoring study has clear implications for paleoclimate research using speleothem records from Molinos cave. Therefore, since calcite precipitates are reproducing the values of the rainfall season, and assuming that present-day situation in terms of seasonally of dripwater amount and isotopic values can be extrapolated towards the recent past (eg. Late Holocene), the isotopic record obtained from stalagmites would be biased towards winter season, thus imprinting a "winter character" on the calcite stable isotopes.

625

626 **5.** Conclusions

627 This monitoring study carried out in NE Iberia allows describing in one hand the main 628 processes that influence $\delta^{18}O_p$ values and, on the other hand, how the transference of the 629 isotopic signal takes place from the atmosphere to cave drip waters and, finally, to calcite 630 precipitates in the cave. Although seasonal variation of temperature and amount of 631 precipitation are influencing the $\delta^{18}O_p$ at Molinos location, the so-called source effect appears 632 very relevant at this region since it is controlling the dominance of air-masses trajectories with 633 different isotopic ranges: basically, Atlantic fronts with more negative $\delta^{18}O_p$ values, and 634 Mediterranean convective storms with more positive values. The study of weather types 635 during rainfall events complemented by the synoptic-scale disaggregation is revealed as a very effective procedure to understand temporal $\delta^{18}O_n$ variability at the studied location. Rainfall at 636 637 the studied location is transferred to the cave basically from November to April, thus 638 corresponding to the entrance of Atlantic fronts. Additionally, there is an influence of large639 scale atmospheric circulation mechanisms, particularly the WeMOi, deduced from significant 640 correlations with $\delta^{18}O_p$ in spring and summer associated to the entrance of northeasterly flows. 641

642 Cave drip waters isotopic range of variation is much smaller than that of rainfall and appears 643 delayed by 2-3 months respect to rainfall $\delta^{18}O_p$ values, suggesting the influence of epikarst 644 processes on attenuating and homogenizing the large variability in the $\delta^{18}O_p$ signal. Limited 645 calcite precipitates are found from November to April when $\delta^{18}O_d$ values are less negative and 646 dripwater rates are constant thus expecting a biased signal towards winter values in Molinos 647 speleothem records.

648

649 6. Acknowledgements

650 The funding for this study mainly derives from GA-LC-030/2011, GA-LC-021/2008, CGL2010-651 16376 and CGL2009-10455/BTE projects. The work was conducted in collaboration with the 652 GRACCIE-Consolider CSD2007-00067 network. A. Moreno acknowledges the funding from the 653 "Ramón y Cajal" postdoctoral program. We are indebt to Emilio and Javier from the Molinos 654 council, Beatriz Bueno (IPE) and Aida Adsuar (IPE) for their help with dripwater sampling, 655 Alberto Barcos (IPE) and Joaquín Perona (UB) for the analyses on waters and calcite samples, 656 María Pazos (IPE) for her help with statistical analyses, César Azorín (IPE) for the WeMOi data, 657 Miguel Sevilla (IPE) for Figure 1 design and Jesús Carrera (IDAEA) for his invaluable help on 658 hydrological modelling. The Ebro Hydrographic Confederation network is acknowledged by the 659 meteorological data from Gallipuén station.

660

662 Figures

Fig. 1. A. Location of the studied cave, Molinos cave, in the Ebro River basin, Northeastern
Iberian Peninsula. B. Geological map where Molinos village and cave and the meteorological
station (Gallipuén reservoir) are indicated. Legend with lithological formations is also included.
C. Mean monthly rainfall (mm), maximum and minimum temperature (°C) at the closest
meteorological station (Gallipuén reservoir) averaged for the last seven years.

668

Fig. 2. Scatter plot of δD and $\delta^{18}O$ values of event precipitation. The local meteoric water line is based on a lineal regression through the Molinos precipitation isotope dataset (dashed blue line). Both the global and the Western Mediterranean meteoric water lines are indicated (black and red lines, respectively). Samples enclosed by a circle indicate possible evaporation during summer rainfall. Shaded area indicates the values of dripwaters represented in Fig. 8. Event 46 may have been subject to non-equilibrium effects and is labeled (see Table 1 for the complete dataset).

676

Fig. 3. Comparison of $\delta^{18}O_p$ values with the maximum temperature values and the amount of rainfall (data from Gallipuén reservoir meteorological station) from February 2010 to September 2012. A running average (time window = 15) of the $\delta^{18}O_p$ is plotted to emphasize the seasonal character. Rainfall events that cause isotope lightening are indicated by gray arrows while seasons are marked by dashed lines.

682

Fig. 4. Percent of the total rainfall recorded at Gallipuén reservoir meteorological station (light gray bars) and percent of total event rainfall sampled (black bars) between February 2010 to September 2012 respect to the associated daily Jenkinson Lamb weather type. All $\delta^{18}O_p$ data are plotted for every weather type (gray diamonds). Two groups are made according the origin of the air masses (eastern or western) and the isotopic range for those groups is shown by dashed lines. Six events are labeled (64, 67, 53, 131, 132 and 143) since they are outside the specified $\delta^{18}O_p$ ranges.

690

Fig. 5. (A) Synoptic maps for all four situations that generate rainfall at Molinos location. (B) Variation of $\delta^{18}O_p$ values along the monitored period. Colors indicate the synoptic-scale climate type for every rainfall event.

Fig. 6. (A) Daily NAO index (blue line) and (B) daily WeMO index (red line) plotted together with $\delta^{18}O_p$ values (black line) along the studied period (February 2010- Sept 2012). Running averages (time window = 25) of both indexes (NAO and WeMO) are plotted.

698

Fig. 7. Dripwater rates in Molinos cave (black line) compared to amount of rainfall (blue line, data from Gallipuén reservoir meteorological station). Only spring and, with less extend, fFall rainfall have an impact on dripwater rates. Rainfall events with higher rates of precipitation are labeled and their $\delta^{18}O_p$ values indicated. Note the importance of air temperature in evaporating summer rainfall causing that summer convective rainfall events (eg. Aug-2010) do not reach the cave.

705

Fig. 8. Comparison of δ^{18} O values from the rainfall (with a running average, windows=5) and δ^{18} O values from dripwaters (collected at three locations in the cave). Dripwater δ^{18} O profile resulting from flowpath modelling is also indicted (orange). Dripwater rates (black line with gray shadow) are also shown. Shaded areas represent the most negative δ^{18} O values in dripwaters, coinciding with maximum dripwater rates (March-July). Periods with calcite precipitation in the cave are also indicated (see Table 4B).

- 712
- 713

714 Table 1. Individual Molinos precipitation events sampled during the study. Synoptic types (see

/15 Figure 5): 1. Atlantic fronts; 2: Back door cold fronts; 3: Conv	ective
--	--------

		Gallipuén reservoir meteorological station								
Event	Date	Total event	Daily temperature (°C)		δ ¹⁸ O	δD	d-excess	Synontic type	Weather type	
Lvent	(mm/dd/yy)	roiafell (mm)			0 Op	0Dp	u-excess	Synoptic type	weather type	
		rainiali (mm)	Max	Min						
1	3/2/10	8.5	15	0	-10.53	-73.15	11.07	2	А	
2	3/5/10	1.1	13	3	-11.34	-73.98	16.73	2	SE	
3	3/7/10	12.1	9	1	-8.68	-52.37	17.10	1	CSE	
4	3/30/10	1.7	21	5	-8.60	-59.13	9.64	1	C	
5	4/4/10	3.1	1/	6	-8./3	-56.89	12.95	2	SE	
7	4/12/10	3.8	11	6	-10.74	-70.70	15.25	2		
8	4/17/10	0.6	15	8	-8.66	-58.88	10.42	3	<u> </u>	
9	4/22/10	0.6	22	9	-9.52	-61.40	14.80		C	
10	4/30/10	5.5	26	11	-3.14	-15.38	9.72	1	С	
11	5/3/10	10.0	20	6	-9.72	-62.71	15.04	2	C	
12	5/10/10	2.9	22	8	-6.97	-50.94	4.81	1	С	
13	5/12/10	8	18	7	-12.29	-86.72	11.62	1	С	
14	5/27/10	9.80	26	12	-4.48	-26.02	9.85	3	C	
15	6/5/10	0.30	31	14	-4.37	-35.12	-0.19	3	C	
16	6/6/10	0.3	31	17	-4.60	-36.78	-0.02	3		
17	6/9/10	3.0	31	15	-7.03	-60.96	0.07	2	CINV	
19	6/12/10	2 10	22	12	-8.72	-64.85	4.77	3	NW/	
20	6/16/10	0.50	20	9	-8.65	-63.65	5.56	3	NW	
21	6/18/10	3.00	19	10	-8.57	-64.28	4.32	3	CE	
22	7/2/10	12.10	34	19	0.38	-2.38	-5.41	3	С	
23	7/22/10	1.70	31	19	-2.64	-18.31	2.84	3	NE	
24	8/1/10	71.00	33	16	-6.54	-39.40	12.91	3	ANW	
25	8/8/10	2.30	31	14	-1.45	-12.44	-0.85	3	С	
26	8/11/10	1.5	30	16	-3.74	-24.28	5.61	3	С	
27	8/13/10	2.00	29	15	-4.00	-23.90	8.08	3	E	
28	8/19/10	1.70	30	18	-3.68	-25.28	4.19	3	<u> </u>	
30	9/1/10	1.50	27	11	-4.99	-25.31	14.62	3	C	
31	9/17/10	9.0	25	10	-5.88	-33 33	13.67	1	CNF	
32	9/18/10	9.0	20	13	-5.85	-32.52	14.25	3	C	
33	9/20/10	1.1	22	8	-4.95	-40.72	-1.14	3	С	
34	9/21/10	1.1	23	13	-7.94	-50.29	13.25	3	C	
35	9/23/10	9.0	26	13	-3.00	-17.14	6.83	1	С	
36	9/24/10	9.0	26	14	-5.46	-35.20	8.46	3	С	
37	10/9/10	19.5	26	12	-4.37	-26.72	8.22	1	C	
38	10/10/10	19.5	24	11	-4.46	-26.98	8.74	1	C	
39	10/12/10	12.3	16	10	-12.25	-79.84	18.18	2	C C	
40	10/13/10	17.5	19	7	-9.49	-59.04	_2 93	1	C	
41	11/1/10	0.7	15	8	-9.54	-68.69	7.61	1	с С	
43	11/7/10	3.6	19	5	-7.11	-51.27	5.62	1	c	
44	11/8/10	0.7	13	3	-7.87	-55.95	7.02	1	CW	
45	11/15/10	0.8	17	5	-7.59	-61.26	-0.56	1	С	
46	11/17/10	1.7	12	2	-11.70	-107.19	-13.63	1	С	
47	11/20/10	1.0	10	2	-6.79	-49.24	5.06	1	С	
48	11/21/10	1.4	13	6	-10.69	-76.87	8.65	1	C	
49	12/1/10	2.3	11	1	-11.88	-68.04	27.03	1	C	
50	12/5/10	0.2	8 10	-1	-8.36	-00.62	b.2b	1	AW	
52	12/9/10	0.6	13	/ 2	-6.28	-32.40	-0.40	1	SE CF	
53	12/22/10	2.3	15	5	-15.74	-112.95	12.97	1	CNW	
54	12/23/10	4.5	15	4	-15.85	-114.00	12.81	1	C	
55	12/31/10	0.5	9	3	-6.72	-46.78	6.98	1	C	
56	1/5/11	0.3	12	4	-6.36	-50.06	0.85	1	W	
57	1/27/11	2.5	5	-3	-10.41	-58.50	24.80	2	С	
58	2/14/11	1.7	15	2	-7.43	-46.74	12.68	1	W	
59	2/15/11	1.0	10	3	-9.80	-69.59	8.81	1	SW	

60	2/17/11	0.2	11	3	-14.16	-105.89	7.40	1	C
61	2/10/11	1.2	1/	1	-6.87	-53.80	1 18	1	C C
01	2/15/11	1.2	14	4	-0.07	-55.00	1.10	1	C
62	2/21/11	3.5	14	5	-6.93	-56.14	-0.66	1	5
63	3/3/11	2.6	8	2	-9.58	-53.57	23.04	2	C
64	3/4/11	1.9	5	0	-13.96	-83.38	28.27	2	CE
65	3/9/11	0.4	9	4	-3.26	-10.42	15.67	2	ANE
66	3/11/11	0.1	1/	0	-15.06	-03 80	26.66	2	۸
00	3/11/11	0.1	14	0	-13.00	-93.80	20.00	2	A
67	3/12/11	9.3	14	2	-14.79	-95.11	23.18	1	NW
68	3/13/11	2.0	11	4	-8.51	-52.35	15.76	1	С
69	3/14/11	6.0	16	6	-6.61	-35.56	17.32	2	CN
70	3/15/11	11.3	12	8	-4.80	-24.24	14.17	1	C
71	3/16/11	60.0	10	4	15 21	100.70	11.96	- 1	°
/1	3/10/11	69.0	10	4	-15.21	-109.79	11.80	1	<u> </u>
72	3/22/11	4.2	14	4	-5.97	-30.73	17.03	2	ANE
73	3/23/11	0.1	9	4	-5.59	-23.78	20.95	2	A
74	3/25/11	0.7	10	5	-6.98	-37.72	18.14	1	Α
75	3/27/11	03	18	7	-6 91	-47 81	7 51	1	CNW
76	3/20/11	2.0	17	7	<u>с го</u>	20.12	5.51	1	6
76	3/30/11	2.0	1/	/	-5.58	-39.12	5.50	1	C
77	4/19/11	0.4	21	6	-0.60	4.09	8.86	1	C
78	4/22/11	17.0	14	9	-7.70	-53.36	8.27	1	CNW
79	4/23/11	11.0	15	8	-7.34	-47.84	10.90	1	CN
80	4/24/11	4.2	18	Q.	-8 44	-65 21	2 20	2	F
01	1/27/11 1/25/44	7.2	10	10	7.20	A7 4F	11 20	2	
81	4/25/11	2.2	15	10	-7.30	-47.15	11.20	2	USE
82	4/28/11	1.5	22	9	-5.50	-29.05	14.93	3	C
83	4/29/11	0.3	21	9	-4.29	-17.60	16.71	2	CNE
84	4/30/11	3.4	19	9	-4.18	-20.47	12.97	1	С
85	5/1/11	27	17	10	-2 37	-17 69	1 30	3	C C
05	5/1/11	2.7	22	10	2.57	10.01	1.50	3	<u>د</u>
80	5/5/11	3.8	23	11	-2.14	-19.01	-1.85	3	A
87	5/7/11	8.8	22	13	-5.44	-35.40	8.14	1	ANW
88	5/11/11	0.2	25	11	-9.18	-61.51	11.94	3	ANE
89	5/14/11	3.5	25	12	-3.06	-14.47	9.97	3	E
90	5/27/11	21	30	14	-4 52	-35.68	0.50	3	F
01	5/2//11	2.1	30	10	7.32	42.27	0.50	3	L (
91	5/29/11	0.8	25	12	-7.18	-43.37	14.11	3	U
92	5/30/11	51.0	29	15	-7.29	-43.15	15.14	3	N
93	6/2/11	1.2	18	9	-3.77	-19.02	11.18	2	E
94	6/4/11	0.8	19	8	-4.93	-21.46	18.00	3	С
95	6/6/11	5.8	23	12	-4.73	-22.86	14.99	3	C
96	6/12/11	0.2	20	12	2 1 2	1/ /2	10.56	2	C C
30	0/12/11	0.2	23	12	-3.12	-14.45	10.50	5	C .
97	6/21/11	7.4	30	1/	-4.10	-29.24	3.55	1	A
98	6/22/11	2.8	31	16	0.14	-8.62	-9.78	3	С
99	7/12/11	3.9	32	20	-4.73	-17.21	20.65	3	С
100	7/19/11	2.0	26	13	-5.96	-31.95	15.71	3	C
101	9/5/11	5 7	22	19	1 22	20.00	2 79	2	C C
101	8/3/11	5.7	33	10	-4.23	-30.09	3.78	3	C
102	8/12/11	1.9	32	17	1.39	-12.22	-23.34	3	L
103	8/19/11	?	33	17	0.45	-11.93	-15.53	3	C
104	8/29/11	0.6	30	17	-1.43	-14.03	-2.61	3	С
105	9/17/11	?	31	15	-2.65	-23.93	-2.71	3	С
106	9/23/11	1	26	13	-1 56	-11 04	1 40	3	C C
107	10/20/11	0.5	10	10	1.50	21 72	E 40	2	
107	10/28/11	0.5	18	10	-4.05	-31.72	5.48	Ζ	INE
108	11/4/11	0.4	20	9	-6.91	-39.99	15.28	1	NW
109	11/5/11	33.6	16	7	-6.34	-38.17	12.54	11	C
110	11/6/11	1.5	10	7	-11.62	-83.19	9.80	2	С
111	11/7/11	0.7	12	8	-7.55	-55.86	4.54	1	C
112	11/15/11	16.7	16	0	7.24	47 14	10 77	1	C C
112	11/13/11	10.7	10	3	-7.24	-47.14	10.77	1	
113	11/20/11	0.3	14	/	-5.88	-33.38	13.62	2	N
114	11/21/11	32.0	14	7	-8.55	-54.55	13.87	2	C
115	11/22/11	6.0	12	8	-12.20	-78.23	19.36	2	С
116	11/23/11	24.4	10	8	-12.01	-75.65	20.47	2	SE
117	12/2/11	4 0	10	2	-0.58	-60.05	15.01	1	CN
110	12/10/11	4.0	10	2	0.50	64 77	14 55		
118	12/16/11	8.4	11	2	-9.54	-01.//	14.55	1	W
119	1/16/12	4	12	-2	-9.34	-56.94	17.78	2	C
120	1/27/12	1	12	1	-7.00	-36.61	19.41	2	NE
121	2/1/12	3	13	1	-9.02	-56.33	15.83	1	С
122	2/5/12	4.5	7	-6	-11.72	-79.97	13.82	2	C
122	2/4/12	1.5	10	с Г	E 60	20.75	10 56	1	
123	5/4/12	4.4	18	5	-5.60	-29.75	10.50	1	AVV
124	3/20/12	24.5	13	3	-11.04	-62.41	16.88	2	E
125	2/21/12	37	11	1	_11 07	-67 18	15 53	2	NF
F	3/21/12	5.7	11	1	-11.07	07.10	15.55	2	
126	4/2/12	8	23	7	-8.20	-54.20	7.56	3	C
126 127	4/2/12	8	23	7	-8.20 -8.21	-54.20	7.56	3	C C

	128	4/4/12	8.9	17	6	-5.06	-23.40	19.33	1	С
	129	4/5/12	3.4	15	7	-8.70	-51.35	15.94	1	С
	130	4/6/12	1.5	16	4	-11.22	-69.53	20.36	1	С
	131	4/12/12	3.6	17	7	-12.35	-88.49	8.07	1	CNW
	132	4/14/12	4.8	16	4	-13.38	-90.13	6.75	1	NW
	133	4/19/12	4.2	17	5	-8.56	-53.82	12.94	1	NW
	134	4/27/12	0.2	28	12	-5.36	-29.93	13.12	1	С
	135	4/30/12	8.5	16	6	-10.54	-68.12	8.84	1	CNW
	136	05/08/12	0.3	25	11	-5.81	-39.20	7.27	1	AW
	137	05/13/12	0.2	34	15	-5.93	-38.46	8.97	3	E
	138	05/20/12	5.4	27	7	-7.19	-50.33	7.21	1	С
	139	06/02/12	0.2	35	18	-0.94	-14.66	-7.15	3	С
	140	06/03/12	17.8	36	16	-0.90	-13.48	-6.24	3	А
	141	06/19/12	0.2	32	17	-0.41	3.07	6.32	3	С
	142	07/27/12	0.2	36	20	0.35	-8.36	-11.19	3	С
	143	07/28/12	0.2	38	15	-2.76	-17.98	4.13	3	CNW
_	144	08/29/12	0.2	39	14	-7.00	-52.43	3.53	3	А
71	6									

- 718 Table 2. Spearman's rank correlation between $\delta^{18}O_p$ and various predictors. Correlations with
- 719 p<0.05 are indicated in italics (p-values can be read above the gray squares).

Correlation alor	ng the year				
	Event $\delta^{18}O_p$	NAO index	WeMO index	P amount	Temperature
Event $\delta^{18}O_p$		0.38843	0.018101	0.025141	4.88E-05
NAO index	-0.073451		0.0088318	0.44372	0.047999
WeMO index	-0.19953	-0.22055		0.58546	0.78312
P amount	-0.18923	0.065249	-0.046489		0.99816
Temperature	0.33621	-0.16744	0.02347	0.00019683	
Winter (DJF)					
Event $\delta^{18}O_p$		0.32268	0.64957	0.024959	0.42242
NAO index	-0.23308		0.70521	0.010936	0.74489
WeMO index	0.10827	0.090226		0.050867	0.41681
P amount	-0.49944	0.55585	0.44227		0.91705
Temperature	0.18997	-0.077648	0.19224	0.024887	
Spring (MAM)					
Event $\delta^{18}O_p$		0.66722	0.046177	0.034116	0.1198
NAO index	0.056656		0.020033	0.51582	0.72256
WeMO index	-0.25844	-0.29962		0.72081	0.32874
P amount	-0.27403	0.085534	0.047102		0.39632
Temperature	0.203	-0.046795	0.12826	-0.11151	
Summer (JJA)					
Event $\delta^{18}O_p$		0.072123	0.035121	0.51624	0.0099096
NAO index	-0.33304		0.59942	0.79451	0.022816
WeMO index	-0.38603	-0.0999		0.54795	0.48994
P amount	-0.1233	0.049633	-0.11419		0.74841
Temperature	0.46339	-0.41435	-0.13107	-0.061099	
Fall (SON)					
Event $\delta^{18}O_p$		0.82612	0.19827	0.43509	0.0010324
NAO index	-0.041129		0.2623	0.99484	0.093035
WeMO index	-0.2375	-0.20766		0.10509	0.23543
P amount	-0.14541	0.0012118	-0.29668		0.31083
Temperature	0.56078	-0.30695	-0.21951	0.18813	

- 724 Table 3. Kruskal-Wallis test performed on $\delta^{18}O_p$ and δD_p data to discriminate if the three
- synoptic patterns and the two main weather types ("Western" and "Eastern" origins) are
- 726 statistically different in terms of their isotopic composition. Event data and anomaly data
- 727 (seasonal component removed) have been considered.
- 728

		Anoma	ly data			Event data			
	Synoptic	patterns	Weathe	er types	Synopt	ic patterns	Weather types		
	δ ¹⁸ Ο	δD	δ ¹⁸ Ο	δD	δ ¹⁸ Ο	δD	δ ¹⁸ 0	δD	
Chi square (KW test)	3.374	1.095	0.01	0.281	37.23	30.18	2.653	3.72	
p-value	0.185	0.578	0.976	0.596	0	0	0.103	0.054	

- 730 Table 4. A) Chemical data of dripwaters sampled seasonally in Molinos cave at dripwater site
- 731 nº 1. Saturation index for calcite is positive (calculations carried out by PHREEQC interactive
- r32 software) all along the year except in winter. NO₂, Br, PO₄, NH₄ and K are not shown since
- values are zero throughout the year.
- 734

		Tª	Conductivity	TDC	Allealinity		An	ions			Cations		SI Calcite
	рн	(°C)	(μS)	105	Aikalinity	F	Cl	NO ₃ ⁻	SO4 ²⁻	Na⁺	Ca ²⁺	Mg ²⁺	
Spring (25 May 2010)	7.46	17	251	151.3	259	0.04	3.365	6.07	24.9090	3.768	148.9730	2.8160	0.44
Summer (1 July 2010)	8.1	14.2	253	150.9	206.1	0.0340	2.244	4.2640	16.7970	2.5640	100.2550	1.9000	0.79
Fall (10 Dec 2010)	8.15	15.4	no data	no data	181.6	0.0482	3.0122	5.0719	24.5756	3.0392	66.6584	1.5857	0.64
Winter (1 March 2012)	7.17	13.5	423	no data	232.08	0.0240	2.473	4.8800	17.2700	1.7520	88.9440	1.6790	-0.13

738Table 4. B) Isotopic composition of present-day calcite growth over artificial substrates at739sampling location MO-3, that corresponds to dripwater site nº1 (Table 3A). Values of $\delta^{18}O_p$ are740averaged during the time interval when calcite was precipitating. Average values of $\delta^{18}O_p$ and741measured range during the time interval when calcite was precipitating are indicated. Average742temperature in the cave is 12°C. The calculated isotopic composition of dripwaters using743equation from Kim and O'Neil (1997) indicates that calcite precipitation took place with slightly744evaporated water and/or in period with less precipitation.

Time interval with	Isotopes	in calcite	δ ¹⁸ Ο. %, (V-SMOW)	δ ¹⁸ O _d ‰ (V-SMOW)	
calcite precipitating	δ ¹³ C ‰ (V-PDB)	δ ¹⁸ O ‰ (V-PDB)	in MO-3	calculated from Kim and O'Neil (1997)	
February-April 2010	-8.7	-6.9	-9.9 (-9.18 to -10.54)	-7.5	
Dec 2010- March 2011	-10.5	-8.2	-9.2 (-8.69 to -9.70)	-8.8	
Nov 2011 - April 2012	-10.7	-7.9	-9.3 (-8.61 to -9.51)	-8.5	

749 **References**

Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of
 precipitation and atmospheric moisture. Hydrological Processes 14:1341–1355.

Araguás-Araguás LJ, Diaz Teijeiro MF (2005) Isotope composition of precipitation and water vapour in
 the Iberian Peninsula. Isotopic composition of precipitation in the Mediterranean Basin in relation to air
 circulation patterns and climate, IAEA, Isotope Hydrology Section. Vienna, Austria, pp 173–191

- Baldini LM, McDermott F, Baldini JUL, et al. (2010) An investigation of the controls on Irish
 precipitation δ18O values on monthly and event timescales. Climate Dynamics 35:977–993. doi:
 10.1007/s00382-010-0774-6
- Baldini LM, McDermott F, Foley AM, Baldini JUL (2008) Spatial variability in the European winter
 precipitation d180-NAO relationship: Implications for reconstructing NAO-mode climate variability in
 the Holocene. Geophysical Research Letters 35:doi:10.1029/2007GL032027.
- Boch R, Spötl C, Kramers J (2009) High-resolution isotope records of early Holocene rapid climate
 change from two coeval stalagmites of Katerloch Cave, Austria. Quaternary Science Reviews 28:2527–
 2538.
- Bradley C, Baker A, Jex CN, Leng MJ (2010) Hydrological uncertainties in the modelling of cave dripwater δ 180 and the implications for stalagmite palaeoclimate reconstructions. Quaternary Science Reviews 29:2201–2214. doi: 10.1016/j.quascirev.2010.05.017
- Breitenbach SFM, Adkins JF, Meyer H, et al. (2010) Strong influence of water vapor source dynamics on
 stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science
 Letters 292:212–220.
- Caballero E, Jiménez De Cisneros C, Reyes E (1996) A stable isotope study of cave seepage waters.
 Applied Geochemistry 11:583–587. doi: 10.1016/0883-2927(96)00026-1
- 772 Canerot J, Pignatelli R (1979) Hoja 1:50.000, 519 Aguaviva. Geological map.
- Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the Western
 Mediterranean Region at three different time scales. Geophys Res Lett 28:PP. 1215–1218. doi:
 200110.1029/2000GL012407
- 776 Craig H (1961) Isotopic Variations in Meteoric Waters. Science 133:1702–1703. doi: 10.1126/science.133.3465.1702
- Cruz FW, Burns S, Karmann I, et al. (2006) A stalagmite record of changes in atmospheric circulation
 and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews
 25:2749–2761.
- 781 Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. doi: 10.1111/j.2153-782 3490.1964.tb00181.x
- 783 Dansgaard W (1953) The abundance of O18 in atmospheric water and water vapour. Tellus 5:461–469.
- 784 Dansgaard W (1961) The isotopic composition of natural waters. Reitzel
- Darling WG, Bath AH, Gibson J, Rozanski K (2006) Isotopes in water. Isotopes in Paleaeoenvironmental
 Research, Leng, M. Springer, pp 1–66
- Delgado-Huertas A, Núñez-Gómez R, Caballero-Mesa E, et al. (1991) Composición isotópica del agua de
 Iluvia en Granada. Soria, pp 350–358
- Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change.
 Quaternary Science Reviews 24:1159–1182.

- Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change.
 Quaternary Science Reviews 28:449–468.
- Fleitmann D, Burns S, Mudelsee M, et al. (2003) Holocene forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739.
- García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, et al. (2011) Mediterranean water resources in a
 global change scenario. Earth-Science Reviews 105:121–139. doi: 10.1016/j.earscirev.2011.01.006
- Goodess CM, Palutikof JP (1998) Development of daily rainfall scenarios for southeast Spain using a
 circulation-type approach to downscaling. International Journal of Climatology 18:1051–1083. doi:
 10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1
- International Atomic Energy Agency (2005) Isotopic composition of precipitation in the Mediterranean
 Basin in relation to air circulation patterns and climate: final report of a coordinated research project,
 2000-2004. International Atomic Energy Agency, Vienna
- Jenkinson AF, Collison P (1977) An initial climatology of Wales over the North Sea. Synoptic
 climatology branch memorandum, Meteorological Office, London. Bracknell, p 18
- S05 Jones MD, Leng MJ, Arrowsmith C, et al. (2007) Local d18O and d2H variability in UK rainfall.
- Kim S-T, O'Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61:3461–3475.
- Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values.
 Quaternary Science Reviews 28:412–432.
- Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. Journal of
 Hydrology 270:75–88. doi: 10.1016/S0022-1694(02)00281-0
- López-Bustins JA (2007) The Western Mediterranean Oscillation and Rainfall in the Catalan Countries.
 unpublished
- Lopez-Bustins J-A, Martin-Vide J, Sanchez-Lorenzo A (2008) Iberia winter rainfall trends based upon
 changes in teleconnection and circulation patterns. Global and Planetary Change 63:171–176. doi:
 10.1016/j.gloplacha.2007.09.002
- Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past
 2000 yr from a [delta]180 stalagmite record. Earth and Planetary Science Letters 235:741–751.
- 819 Mariotti A, Zeng N, Lau K-M (2002) Euro-Mediterranean rainfall and ENSO—a seasonally varying 820 relationship. Geophysical Research Letters 29:59–1–59–4. doi: 10.1029/2001GL014248
- Martin-Vide J, Lopez-Bustins J-A (2006) The Western Mediterranean Oscillation and rainfall in the
 Iberian Peninsula. International Journal of Climatology 26:1455–1475. doi: 10.1002/joc.1388
- Mattey D, Lowry D, Duffet J, et al. (2008) A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters 269:80–95. doi: 10.1016/j.epsl.2008.01.051
- Millán M, Estrela MJ, Caselles V (1995) Torrential precipitations on the Spanish east coast: the role of
 the Mediterranean sea surface temperature. Atmospheric Research 36:1–16.
- Millán MM, Estrela MJ, Miró J (2005) Rainfall Components: Variability and Spatial Distribution in a
 Mediterranean Area (Valencia Region). Journal of Climate 18:2682–2705. doi: 10.1175/JCLI3426.1
- 830 Millán MM, Salvador R, Mantilla E, Kallos G (1997) Photooxidant dynamics in the Mediterranean basin 831 in summer: results from European research projects. Journal of Geophysical Research 102:8811–8823.

- 832 Piccini L, Zanchetta G, Drysdale RN, et al. (2008) The environmental features of the Monte Corchia cave
- system (Apuan Alps, central Italy) and their effects on speleothem growth. International Journal of
 Speleology 37:153–172.
- Plata Bedmar A (1994) Composición isotópica de las precipitaciones y aguas subterráneas de la península
 Ibérica. Ministerio de Fomento
- Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation.
 Geophysical Monograph Series 78:PP. 1–36.
- Saighi O (2005) Isotopic composition of precipitation from Algiers and Assekrem. Isotopic composition
 of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate, IAEA,
 Isotope Hydrology Section. Vienna, Austria, pp 5–17
- Spellman G (2000) The application of an objective weather-typing system to the Iberian peninsula.
 Weather 55:375–385. doi: 10.1002/j.1477-8696.2000.tb04023.x
- Treble PC, Budd WF, Hope PK, Rustomji PK (2005) Synoptic-scale climate patterns associated with
 rainfall δ180 in southern Australia. Journal of Hydrology 302:270–282. doi:
 10.1016/j.jhydrol.2004.07.003
- Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: Modern calibration of δ 180 and δ 13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta 75:4929–4950. doi: 10.1016/j.gca.2011.06.005
- Trigo RM, DaCamara CC (2000) Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology 20:1559–1581.
- Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research 20:9–17.
- Trigo RM, Pozo-Vázquez D, Osborne T, et al. (2004) North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian peninsula. International Journal of Climatology 24:925–944.
- Vandenschrick G, van Wesemael B, Frot E, et al. (2002) Using stable isotope analysis (δD - $\delta 18O$) to characterise the regional hydrology of the Sierra de Gador, south east Spain. Journal of Hydrology 265:43-55.
- Wackerbarth A, Langebroek PM, Werner M, et al. (2012) Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves. Clim Past 8:1781–1799. doi: 10.5194/cp-8-1781-2012
- Wackerbarth A, Scholz D, Fohlmeister J, Mangini A (2010) Modelling the δ18O value of cave drip water
 and speleothem calcite. Earth and Planetary Science Letters 299:387–397.
- Wang X, Auler AS, Edwards RL, et al. (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34:

	Gallipuen ı	meteorological station	
Date (dd/mm/yyyy)	Rainfall (mm)	Max Temperature (°C)	Min Temperature (°C)
01/01/2010	0.0	12.0	4.0
02/01/2010	0.8	16.0	6.0
03/01/2010	0.0	10.0	-2.0
04/01/2010	1.5	13.0	4.0
05/01/2010	1.9	10.0	2.0
06/01/2010	0.9	7.0	0.0
07/01/2010	4.0	6.0	-2.0
08/01/2010	26.5	0.0	0.0
09/01/2010	0.0	0.0	0.0
10/01/2010	0.0	0.0	0.0
11/01/2010	0.0	0.0	0.0
12/01/2010	0.0	6.0	-5.0
13/01/2010	3.0	8.0	-4.0
14/01/2010	0.2	11.0	3.0
15/01/2010	3.7	12.0	2.0
16/01/2010	0.0	11.0	0.0
17/01/2010	0.0	15.0	3.0
18/01/2010	1.0	11.0	5.0
19/01/2010	0.0	14.0	5.0
20/01/2010	0.5	13.0	5.0
21/01/2010	0.0	13.0	2.0
22/01/2010	0.0	11.0	1.0
23/01/2010	0.0	14.0	1.0
24/01/2010	0.0	9.0	0.0
25/01/2010	0.7	8.0	0.0
26/01/2010	2.3	5.0	-2.0
27/01/2010	0.0	5.0	-3.0
28/01/2010	0.0	4.0	-6.0
29/01/2010	0.0	7.0	1.0
30/01/2010	1.2	10.0	2.0
31/01/2010	0.0	11.0	3.0
01/02/2010	5.5	9.0	-2.0
02/02/2010	0.0	7.0	-3.0
03/02/2010	0.0	10.0	-3.0
04/02/2010	0.0	10.0	2.0
05/02/2010	8.2	9.0	3.0
06/02/2010	0.2	13.0	3.0
07/02/2010	0.0	13.0	4.0
08/02/2010	0.0	11.0	3.0
09/02/2010	11.3	14.0	2.0
10/02/2010	0.0	7.0	-1.0
11/02/2010	0.0	7.0	-4.0
12/02/2010	0.0	3.0	-5.0
13/02/2010	0.0	1.0	-4.0
14/02/2010	0.0	1.0	-5.0
15/02/2010	0.0	4.0	-4.0
16/02/2010	2.2	1.0	-3.0
17/02/2010	0.0	10.0	5.0

18/02/2010	0.0	14.0	1.0
19/02/2010	6.3	13.0	2.0
20/02/2010	0.0	9.0	1.0
21/02/2010	0.0	10.0	2.0
22/02/2010	0.0	13.0	0.0
23/02/2010	0.0	16.0	6.0
24/02/2010	0.0	16.0	7.0
25/02/2010	0.0	16.0	4.0
26/02/2010	0.0	18.0	5.0
27/02/2010	0.2	15.0	3.0
28/02/2010	0.0	19.0	6.0
01/03/2010	0.0	13.0	3.0
02/03/2010	0.0	15.0	0.0
03/03/2010	8.5	14.0	3.0
04/03/2010	6.5	8.0	4.0
05/03/2010	0.0	13.0	3.0
06/03/2010	1.1	9.0	2.0
07/03/2010	0.0	9.0	1.0
08/03/2010	12.1	7.0	-4 0
09/03/2010	0.0	2.0	-3.0
10/03/2010	0.0	6.0	-5.0
11/03/2010	0.0	2.0	-3.0
12/03/2010	0.0	4.0	-2.0
13/03/2010	0.0	4.0 5 0	-2.0
14/03/2010	0.0	9.0	-1.0
15/03/2010	0.0	11.0	-4.0
16/03/2010	0.0	15.0	-4.0
17/03/2010	0.0	14.0	1.0
18/03/2010	0.0	14.0	1.0
10/03/2010	0.0	17.0	3.0
20/03/2010	0.3	20.0	3.0
20/03/2010	2.5	20.0	7.0
21/03/2010	0.0	19.0	9.0
22/03/2010	0.0	15.0	0.0
23/03/2010	0.0	13.0	4.0 5.0
24/03/2010	0.0	17.0	5.0 8.0
25/03/2010	1.0	17.0	0.0
20/03/2010	0.0	17.0	4.0 5.0
27/03/2010	0.0	10.0	5.0
28/03/2010	0.0	10.0	5.0
29/03/2010	0.0	19.0	6.0
30/03/2010	1.7	21.0	5.0
31/03/2010	0.0	15.0	3.0
01/04/2010	0.0	14.0	2.0
02/04/2010	0.0	13.0	3.0
03/04/2010	0.0	18.0	5.0
04/04/2010	3.1	17.0	6.0
05/04/2010	0.0	17.0	8.0
06/04/2010	0.0	17.0	9.0
07/04/2010	0.0	19.0	11.0
08/04/2010	5.5	10.0	9.0

09/04/2010	0.0	15.0	6.0
10/04/2010	0.0	17.0	6.0
11/04/2010	0.0	19.0	7.0
12/04/2010	0.0	22.0	8.0
13/04/2010	11.0	11.0	9.0
14/04/2010	3.8	11.0	6.0
15/04/2010	0.5	10.0	5.0
16/04/2010	1.4	14.0	5.0
17/04/2010	0.6	15.0	8.0
18/04/2010	5.5	12.0	8.0
19/04/2010	4.7	15.0	7.0
20/04/2010	0.0	19.0	7.0
21/04/2010	0.0	21.0	7.0
22/04/2010	0.6	22.0	9.0
23/04/2010	8.0	15.0	11.0
24/04/2010	0.0	18.0	8.0
25/04/2010	0.0	22.0	8.0
26/04/2010	0.0	23.0	11.0
27/04/2010	0.0	25.0	12.0
28/04/2010	0.0	26.0	10.0
29/04/2010	0.0	26.0	11.0
30/04/2010	0.0	26.0	11.0
01/05/2010	5.5	23.0	12.0
02/05/2010	0.3	19.0	8.0
03/05/2010	10.0	20.0	6.0
04/05/2010	19.5	20.0	4.0
05/05/2010	0.0	5.0 7 0	4.0
06/05/2010	0.0	10.0	4.0
07/05/2010	0.0	13.0	4.0
07/05/2010	5.0	16.0	3.0 8.0
08/05/2010	0.6	18.0	8.0
10/05/2010	0.0	22.0	8.0
11/05/2010	2.0	10.0	0.0 7 0
12/05/2010	2.9	19.0	7.0
12/05/2010	0.0	16.0	7.0
13/05/2010	0.0	14.0	0.0
14/05/2010	0.5	14.0	4.0
16/05/2010	0.0	12.0	4.0
17/05/2010	0.0	10.0	5.0
17/05/2010	0.0	10.0	6.0
18/05/2010	0.0	19.0	4.0
19/05/2010	0.0	24.0	5.0
20/05/2010	0.0	22.0	9.0
21/05/2010	0.0	24.0	9.0
22/05/2010	0.0	26.0	13.0
23/05/2010	0.0	27.0	11.0
24/05/2010	0.0	26.0	11.0
25/05/2010	0.0	26.0	11.0
26/05/2010	0.0	28.0	13.0
27/05/2010	0.0	26.0	12.0
28/05/2010	9.8	23.0	12.0

29/05/2010	0.0	19.0	10.0
30/05/2010	0.0	25.0	12.0
31/05/2010	0.0	27.0	15.0
01/06/2010	0.0	27.0	16.0
02/06/2010	0.0	28.0	16.0
03/06/2010	0.0	26.0	11.0
04/06/2010	0.0	29.0	11.0
05/06/2010	0.0	31.0	14.0
06/06/2010	0.3	31.0	17.0
07/06/2010	1.6	23.0	13.0
08/06/2010	0.0	28.0	14.0
09/06/2010	3.0	31.0	15.0
10/06/2010	12.8	21.0	12.0
11/06/2010	0.0	22.0	12.0
12/06/2010	0.0	22.0	12.0
13/06/2010	13.3	19.0	11.0
14/06/2010	0.0	23.0	12.0
15/06/2010	21	20.0	9.0
16/06/2010	0.0	20.0	9.0
17/06/2010	0.5	19.0	10.0
18/06/2010	0.0	19.0	10.0
19/06/2010	3.0	21.0	10.0
20/06/2010	0.0	21.0	10.0
21/06/2010	0.0	22.0	8.0
22/06/2010	0.0	20.0	9.0
22/00/2010	0.0	23.0	9.0 10.0
23/06/2010	0.0	21.0	10.0
24/00/2010	0.0	20.0	12.0
25/06/2010	0.0	30.0	10.0
20/00/2010	0.0	30.0	18.0
27/06/2010	0.0	31.0	17.0
28/06/2010	0.5	30.0	15.0
29/06/2010	0.0	30.0	16.0
30/06/2010	0.6	30.0	15.0
01/07/2010	0.0	31.0	15.0
02/07/2010	0.0	34.0	19.0
03/07/2010	12.1	33.0	16.0
04/07/2010	0.0	31.0	18.0
05/07/2010	0.0	31.0	16.0
06/07/2010	0.0	31.0	15.0
07/07/2010	0.0	31.0	16.0
08/07/2010	0.0	35.0	17.0
09/07/2010	0.0	38.0	22.0
10/07/2010	0.0	37.0	20.0
11/07/2010	0.0	33.0	20.0
12/07/2010	0.0	35.0	21.0
13/07/2010	0.0	36.0	18.0
14/07/2010	0.0	34.0	19.0
15/07/2010	0.0	36.0	15.0
16/07/2010	0.0	31.0	17.0
17/07/2010	0.0	34.0	18.0

18/07/2010	0.0	31.0	15.0
19/07/2010	0.0	33.0	17.0
20/07/2010	0.0	34.0	20.0
21/07/2010	0.0	33.0	19.0
22/07/2010	0.0	31.0	19.0
23/07/2010	1.7	26.0	16.0
24/07/2010	0.0	27.0	12.0
25/07/2010	0.0	29.0	13.0
26/07/2010	0.0	28.0	15.0
27/07/2010	0.0	28.0	15.0
28/07/2010	0.0	30.0	16.0
29/07/2010	0.0	33.0	16.0
30/07/2010	0.0	30.0	15.0
31/07/2010	0.0	30.0	15.0
01/08/2010	0.0	33.0	16.0
02/08/2010	71.0	31.0	17.0
03/08/2010	0.0	27.0	16.0
04/08/2010	0.0	27.0	13.0
05/08/2010	0.0	28.0	13.0
06/08/2010	0.0	26.0	12.0
07/08/2010	0.0	27.0	12.0
08/08/2010	0.0	31.0	14.0
09/08/2010	2.3	30.0	19.0
10/08/2010	10.6	33.0	18.0
11/08/2010	15	30.0	16.0
12/08/2010	0.0	30.0	17.0
13/08/2010	0.0	29.0	15.0
14/08/2010	2.0	20.0	10.0
15/08/2010	0.0	22.0	12.0
16/08/2010	0.0	22.0	12.0
17/08/2010	0.0	25.0	11.0
18/08/2010	0.0	29.0	15.0
10/08/2010	0.0	29.0 30.0	18.0
20/08/2010	17	24.0	10.0
21/08/2010	0.0	24.0	15.0
22/08/2010	0.0	23.0	13.0
22/00/2010	0.0	36.0	18.0
24/08/2010	0.0	35.0	10.0
25/08/2010	0.0	31.0	19.0
26/08/2010	0.0	34.0	10.0
20/08/2010	0.0	34.0	19.0
27/06/2010	0.0	39.0	20.0
20/08/2010	0.0	34.0	13.0
29/08/2010	0.0	20.0	14.0
30/08/2010	0.0	27.0	12.0
31/00/2010	0.0	27.U 27.0	10.0
01/09/2010	0.0	27.0	11.0
02/09/2010	1.5	27.0	16.0
03/09/2010	1.0	23.0	15.0
04/09/2010	0.0	27.0	15.0
05/09/2010	0.0	31.0	16.0

06/09/2010	0.0	31.0	16.0
07/09/2010	0.0	33.0	20.0
08/09/2010	0.0	28.0	12.0
09/09/2010	0.0	24.0	12.0
10/09/2010	0.0	23.0	12.0
11/09/2010	0.0	26.0	12.0
12/09/2010	0.0	28.0	11.0
13/09/2010	0.0	28.0	13.0
14/09/2010	0.0	27.0	11.0
15/09/2010	0.0	27.0	11.0
16/09/2010	0.0	30.0	14.0
17/09/2010	0.0	25.0	15.0
18/09/2010	9.0	20.0	12.0
19/09/2010	0.0	20.0	8.0
20/09/2010	0.0	22.0	8.0
21/09/2010	1.1	23.0	13.0
22/09/2010	0.0	25.0	13.0
23/09/2010	0.0	26.0	13.0
24/09/2010	9.0	26.0	14.0
25/09/2010	0.0	22.0	11.0
26/09/2010	0.0	19.0	10.0
27/09/2010	0.0	17.0	3.0
28/09/2010	0.0	19.0	4.0
29/09/2010	0.0	19.0	7.0
30/09/2010	0.0	25.0	8.0
01/10/2010	0.0	22.0	10.0
02/10/2010	0.0	23.0	10.0
03/10/2010	0.0	27.0	12.0
04/10/2010	0.0	27.0	12.0
05/10/2010	0.0	21.0	7.0
06/10/2010	0.0	24.0	8.0
07/10/2010	0.0	24.0	9.0
08/10/2010	0.0	24.0	13.0
09/10/2010	0.0	26.0	12.0
10/10/2010	19.5	24.0	11.0
11/10/2010	0.0	18.0	11.0
12/10/2010	12.3	16.0	10.0
13/10/2010	17.5	19.0	12.0
14/10/2010	0.0	18.0	10.0
15/10/2010	0.0	18.0	7.0
16/10/2010	0.0	16.0	6.0
17/10/2010	0.0	15.0	6.0
18/10/2010	0.0	13.0	5.0
19/10/2010	0.0	13.0	4.0
20/10/2010	0.0	16.0	4.0 3 0
21/10/2010	0.0	17.0	2.0
22/10/2010	0.0	16.0	2.0
23/10/2010	0.0	17.0	5.0
20/10/2010	0.0	18.0	11 0
25/10/2010	0.0	20.0	6.0
_0, .0, _0, 0	0.1	20.0	0.0

26/10/2010	0.0	12.0	3.0
27/10/2010	0.0	16.0	3.0
28/10/2010	0.0	20.0	3.0
29/10/2010	0.0	19.0	7.0
30/10/2010	0.0	18.0	8.0
31/10/2010	0.6	15.0	7.0
01/11/2010	0.7	15.0	8.0
02/11/2010	0.0	15.0	9.0
03/11/2010	0.0	16.0	8.0
04/11/2010	0.0	18.0	8.0
05/11/2010	0.0	19.0	8.0
06/11/2010	0.0	17.0	5.0
07/11/2010	0.0	19.0	5.0
08/11/2010	3.6	13.0	3.0
09/11/2010	0.7	13.0	6.0
10/11/2010	0.0	15.0	7.0
11/11/2010	0.0	14.0	3.0
12/11/2010	0.0	15.0	3.0
13/11/2010	0.0	19.0	5.0
14/11/2010	0.0	17.0	4.0
15/11/2010	0.8	17.0	5.0
16/11/2010	0.0	13.0	4.0
17/11/2010	0.0	12.0	2.0
18/11/2010	17	11.0	3.0
19/11/2010	0.0	12.0	3.0
20/11/2010	0.0	10.0	2.0
21/11/2010	1.0	13.0	2.0 6.0
22/11/2010	1.0	13.0	4.0
23/11/2010	0.0	11.0	3.0
24/11/2010	0.0	11.0	3.0
25/11/2010	0.0	10.0	-1.0
26/11/2010	0.0	11.0	-1.0
27/11/2010	0.0	7.0	-3.0
28/11/2010	0.0	7.0	-3.0
29/11/2010	0.0	8.0	-4 0
30/11/2010	0.0	4.0	-2.0
01/12/2010	0.0	11.0	1.0
02/12/2010	0.0	10.0	0.0
03/12/2010	2.3	6.0	0.0
04/12/2010	0.0	6.0	-2.0
05/12/2010	0.0	8.0	-1.0
06/12/2010	0.2	15.0	3.0
07/12/2010	0.0	21.0	10.0
08/12/2010	0.0	17.0	10.0
09/12/2010	1 1	19.0	7.0
10/12/2010	0.0	15.0	7.0 4 0
11/12/2010	0.0	12.0	4.0 0 0
12/12/2010	0.0	12.0	0.0
13/12/2010	0.0	12.0	0.0 3 A
14/12/2010	0.0	13.0	5.0 2 0
	0.0	10.0	2.0

15/12/2010	0.0	8.0	-2.0
16/12/2010	0.0	4.0	-4.0
17/12/2010	0.0	4.0	-4.0
18/12/2010	0.0	10.0	-3.0
19/12/2010	0.6	9.0	0.0
20/12/2010	0.0	9.0	0.0
21/12/2010	0.0	11.0	0.0
22/12/2010	0.0	15.0	5.0
23/12/2010	2.3	15.0	4.0
24/12/2010	4.5	7.0	2.0
25/12/2010	0.0	5.0	0.0
26/12/2010	0.0	5.0	-3.0
27/12/2010	0.0	7.0	-4.0
28/12/2010	0.0	8.0	-3.0
29/12/2010	0.0	10.0	1.0
30/12/2010	0.0	10.0	-1.0
31/12/2010	0.0	9.0	3.0
01/01/2011	0.5	12.0	5.0
02/01/2011	0.0	11.0	6.0
03/01/2011	0.0	10.0	1.0
04/01/2011	0.0	7.0	-1 0
05/01/2011	0.3	12.0	4.0
06/01/2011	0.7	13.0	6.0
07/01/2011	0.0	16.0	7.0
08/01/2011	0.0	15.0	3.0
09/01/2011	0.0	17.0	5.0
10/01/2011	0.0	12.0	2.0
11/01/2011	0.0	11.0	3.0
12/01/2011	0.0	15.0	8.0
13/01/2011	0.0	14.0	3.0
14/01/2011	0.0	16.0	4.0
15/01/2011	0.0	16.0	4.0 2 0
16/01/2011	0.0	14.0	2.0
17/01/2011	0.0	16.0	2.0
18/01/2011	0.0	17.0	2.0
19/01/2011	0.0	11.0	2.0
20/01/2011	0.0	10.0	2.0
21/01/2011	0.0	11.0	-3.0
22/01/2011	0.0	10	-4.0
22/01/2011	0.0	4.0	-4.0
23/01/2011	0.0	4.0	-0.0
24/01/2011	0.0	4.0 5.0	-6.0
26/01/2011	0.0	5.0	-0.0
20/01/2011	0.0	5.0	-0.0
28/01/2011	0.0	0.U 6 0	-3.0
20/01/2011	2.0	0.0	2.0
29/01/2011	0.1	9.0	1.0
30/01/2011	0.2	12.0	2.0
31/01/2011	0.0	6.U	1.0
01/02/2011	0.0	5.0	1.0
02/02/2011	0.0	7.0	0.0

03/02/2011	0.0	10.0	2.0
04/02/2011	0.0	11.0	2.0
05/02/2011	0.0	15.0	3.0
06/02/2011	0.0	17.0	2.0
07/02/2011	0.0	17.0	2.0
08/02/2011	0.0	16.0	1.0
09/02/2011	0.0	14.0	1.0
10/02/2011	0.0	15.0	1.0
11/02/2011	0.0	14.0	2.0
12/02/2011	0.0	15.0	2.0
13/02/2011	0.0	16.0	2.0
14/02/2011	1.7	15.0	2.0
15/02/2011	0.0	10.0	3.0
16/02/2011	1.0	8.0	2.0
17/02/2011	0.0	11.0	3.0
18/02/2011	0.2	9.0	3.0
19/02/2011	0.0	14.0	4.0
20/02/2011	1.2	15.0	5.0
21/02/2011	0.0	14.0	5.0
22/02/2011	3.5	13.0	7.0
23/02/2011	0.0	13.0	9.0
24/02/2011	0.0	14.0	6.0
25/02/2011	0.0	17.0	7.0
26/02/2011	0.0	18.0	6.0
27/02/2011	0.0	18.0	6.0
28/02/2011	0.0	10.0	2.0
01/03/2011	0.0	8.0	2.0
02/03/2011	0.0	0.0	0.0
02/03/2011	0.0	9.0 8.0	2.0
03/03/2011	0.0	5.0	2.0
04/03/2011	2.0	5.0	0.0
05/03/2011	1.9	10.0	0.0
00/03/2011	0.0	10.0	0.0
07/03/2011	0.0	15.0	0.0
08/03/2011	0.0	15.0	2.0
09/03/2011	0.4	9.0	4.0
10/03/2011	0.0	10.0	0.0
11/03/2011	0.0	14.0	0.0
12/03/2011	9.3	14.0	2.0
13/03/2011	2.0	11.0	4.0
14/03/2011	6.0	16.0	6.0
15/03/2011	11.3	12.0	8.0
16/03/2011	69.0	10.0	4.0
17/03/2011	9.0	10.0	5.0
18/03/2011	0.0	13.0	5.0
19/03/2011	0.0	16.0	4.0
20/03/2011	0.0	15.0	2.0
21/03/2011	0.0	15.0	3.0
22/03/2011	0.0	14.0	4.0
23/03/2011	4.2	9.0	4.0
24/03/2011	0.1	8.0	4.0

25/03/2011	0.0	10.0	5.0
26/03/2011	0.7	16.0	5.0
27/03/2011	0.3	18.0	7.0
28/03/2011	1.0	17.0	8.0
29/03/2011	0.0	16.0	8.0
30/03/2011	2.0	17.0	7.0
31/03/2011	0.0	17.0	8.0
01/04/2011	0.0	21.0	8.0
02/04/2011	0.0	24.0	9.0
03/04/2011	0.0	26.0	10.0
04/04/2011	0.7	23.0	8.0
05/04/2011	0.0	19.0	8.0
06/04/2011	0.0	23.0	9.0
07/04/2011	0.0	25.0	10.0
08/04/2011	0.0	25.0	10.0
09/04/2011	0.0	28.0	11.0
10/04/2011	0.0	29.0	12.0
11/04/2011	0.0	20.0	10.0
12/04/2011	0.0	20.0	10.0
13/04/2011	0.0	20.0	4 0
14/04/2011	0.0	20.0	4.0 5.0
15/04/2011	0.0	21.0	5.0 6.0
16/04/2011	0.0	18.0	5.0
17/04/2011	0.0	18.0	5.0
18/04/2011	0.0	21.0	5.0
10/04/2011	0.0	21.0	5.0 6.0
20/04/2011	0.4	21.0	0.0
20/04/2011	2.5	10.0	0.0
21/04/2011	0.0	14.0	9.0
22/04/2011	17.0	14.0	9.0
23/04/2011	11.0	10.0	0.0
24/04/2011	4.2	10.0	9.0
25/04/2011	2.2	15.0	10.0
26/04/2011	8.8	19.0	10.0
27/04/2011	0.0	20.0	10.0
28/04/2011	0.0	22.0	9.0
29/04/2011	1.5	21.0	9.0
30/04/2011	0.3	19.0	9.0
01/05/2011	3.4	17.0	10.0
02/05/2011	2.7	20.0	9.0
03/05/2011	0.0	20.0	11.0
04/05/2011	0.0	22.0	10.0
05/05/2011	0.0	23.0	11.0
06/05/2011	3.8	21.0	11.0
07/05/2011	0.0	22.0	13.0
08/05/2011	8.8	22.0	9.0
09/05/2011	0.0	23.0	10.0
10/05/2011	0.0	25.0	11.0
11/05/2011	0.0	25.0	11.0
12/05/2011	0.0	27.0	13.0
13/05/2011	0.2	24.0	12.0

14/05/2011	0.0	25.0	12.0
15/05/2011	3.5	24.0	7.0
16/05/2011	0.0	19.0	6.0
17/05/2011	0.0	22.0	9.0
18/05/2011	0.0	24.0	11.0
19/05/2011	0.0	21.0	11.0
20/05/2011	0.0	20.0	9.0
21/05/2011	0.0	24.0	11.0
22/05/2011	0.0	25.0	12.0
23/05/2011	0.0	26.0	11.0
24/05/2011	0.0	28.0	13.0
25/05/2011	0.0	29.0	15.0
26/05/2011	0.0	32.0	16.0
27/05/2011	0.0	30.0	14.0
28/05/2011	2.1	22.0	12.0
29/05/2011	0.0	25.0	12.0
30/05/2011	0.8	29.0	15.0
31/05/2011	51.0	23.0	12.0
01/06/2011	0.0	20.0	8.0
02/06/2011	0.0	18	9
03/06/2011	1.2	21	10
04/06/2011	0.0	19	8
05/06/2011	0.8	20	11
06/06/2011	0.0	23	12
07/06/2011	5.8	20	12
08/06/2011	0.2	22	10
00/00/2011	0.2	21	10 Q
10/06/2011	0.0	21	12
11/06/2011	0.2	22	12
12/06/2011	0.0	22	12
12/06/2011	0.0	23	12
13/00/2011	0.0	29	15
14/00/2011	0.0	29	15
16/06/2011	0.0	29	10
17/06/2011	0.0	30	17
19/06/2011	0.0	29	10
10/06/2011	0.0	30	10
19/06/2011	0.0	20	10
20/06/2011	0.0	27	12
21/06/2011	0.0	30	17
22/06/2011	7.4	31	16
23/06/2011	2.8	30	14
24/06/2011	0.0	20	14
25/06/2011	0.0	28	14
26/06/2011	0.0	32	16
27/06/2011	0.0	35	18
28/06/2011	0.0	35	19
29/06/2011	0.0	35	14
30/06/2011	0.0	26	11
01/07/2011	0.0	27	12
02/07/2011	0.0	29	15

03/07/2011	0.0	33	19
04/07/2011	0.0	33	17
05/07/2011	0.0	29	15
06/07/2011	0.0	32	17
07/07/2011	0.0	30	14
08/07/2011	0.0	28	12
09/07/2011	0.0	29	13
10/07/2011	4.5	31	18
11/07/2011	2.5	31	16
12/07/2011	0.0	32	20
13/07/2011	3.9	36	14
14/07/2011	0.0	24	12
15/07/2011	0.0	26	13
16/07/2011	0.0	32	15
17/07/2011	0.0	33	19
18/07/2011	0.0	25	12
19/07/2011	2.0	26	13
20/07/2011	0.0	23	11
21/07/2011	0.0	27	13
22/07/2011	0.0	28	15
23/07/2011	0.0	25	14
24/07/2011	0.0	26	13
25/07/2011	0.0	25	15
26/07/2011	0.0	25	17
27/07/2011	0.0	20	16
28/07/2011	0.0	23	15
20/07/2011	0.0	28	16
29/07/2011	0.0	20	17
21/07/2011	0.0	29	16
01/09/2011	0.0	20	10
01/06/2011	0.0	29	17
02/08/2011	0.0	32	17
03/08/2011	0.0	33	18
04/08/2011	0.0	30	17
05/08/2011	0.0	33	18
06/08/2011	5.7	32	17
07/08/2011	0.0	32	17
08/08/2011	0.0	30	16
09/08/2011	0.0	26	12
10/08/2011	0.0	28	10
11/08/2011	0.0	28	11
12/08/2011	0.0	32	17
13/08/2011	1.9	33	18
14/08/2011	0.0	31	18
15/08/2011	0.0	33	19
16/08/2011	0.0	32	18
17/08/2011	0.0	33	18
18/08/2011	0.0	36	19
19/08/2011	0.0	33	17
20/08/2011	0.0	35	18
21/08/2011	0.0	37	20

22/08/2011	0.0	37	21
23/08/2011	0.0	34	18
24/08/2011	0.0	32	18
25/08/2011	0.0	30	17
26/08/2011	0.0	31	17
27/08/2011	0.0	30	11
28/08/2011	0.0	25	12
29/08/2011	0.6	30	17
30/08/2011	0.0	30	14
31/08/2011	0.0	30	15
01/09/2011	0.0	30	17
02/09/2011	0.8	30	17
03/09/2011	1.2	27	12
04/09/2011	0.0	25	13
05/09/2011	0.0	28	15
06/09/2011	0.0	25	11
07/09/2011	0.0	27	12
08/09/2011	0.0	30	15
09/09/2011	0.0	31	15
10/09/2011	0.0	32	16
11/09/2011	0.0	33	18
12/09/2011	0.0	31	14
13/09/2011	0.0	30	14
14/09/2011	0.0	31	15
15/09/2011	0.0	30	15
16/09/2011	0.0	31	10
17/09/2011	0.0	31	15
18/09/2011	0.0	28	15
19/09/2011	0.0	18	10
20/09/2011	0.0	21	10
21/09/2011	0.0	25	10
22/09/2011	0.0	20	12
23/09/2011	0.0	26	12
24/09/2011	1.0	25	14
25/09/2011	0.0	23	14
26/09/2011	0.0	24	12
27/09/2011	0.0	20	12
28/09/2011	0.0	28	12
20/00/2011	0.0	20	10
29/09/2011	0.0	26	11
01/10/2011	0.0	20	10
01/10/2011	0.0	25	8
02/10/2011	0.0	25	0
03/10/2011	0.0	23	9 10
04/10/2011	0.0	21	10
05/10/2011	0.0	20	10
07/10/2011	0.0	20	10
08/10/2011	0.0	20	0
00/10/2011	0.0	10	9 40
10/10/2011	0.0	17	10
10/10/2011	0.0	∠∪	Э

11/10/2011	0.0	26	8
12/10/2011	0.0	29	11
13/10/2011	0.0	29	11
14/10/2011	0.0	28	9
15/10/2011	0.0	20	9
16/10/2011	0.0	24	9
17/10/2011	0.0	22	9
18/10/2011	0.0	21	8
19/10/2011	0.0	21	8
20/10/2011	0.0	20	8
21/10/2011	0.0	15	2
27/10/2011	0.0	15	2
22/10/2011	0.0	10	5 6
23/10/2011	0.0	20 79	8
25/10/2011	0.0	18	0
26/10/2011	0.0	10	
27/10/2011	0.6	20	5
28/10/2011	0.0	19	10
20/10/2011	0.5	10	10
29/10/2011	0.3	13	10
30/10/2011	0.0	14	11
31/10/2011	0.0	20	10
01/11/2011	0.0	21	10
02/11/2011	0.8	22	10
03/11/2011	0.4	19	12
04/11/2011	0.4	20	9
05/11/2011	33.6	16	7
06/11/2011	1.5	10	/
07/11/2011	0.7	12	8
08/11/2011	1.5	14	10
09/11/2011	0.0	18	5
10/11/2011	0.6	19	6
11/11/2011	0.0	17	8
12/11/2011	0.0	21	8
13/11/2011	0.0	20	8
14/11/2011	0.0	17	11
15/11/2011	16.7	16	9
16/11/2011	0.0	14	5
17/11/2011	0.0	15	4
18/11/2011	0.0	14	6
19/11/2011	0.0	15	7
20/11/2011	0.3	13	6
21/11/2011	32.0	14	7
22/11/2011	6.0	12	8
23/11/2011	24.4	10	8
24/11/2011	0.0	15	6
25/11/2011	0.0	15	3
26/11/2011	0.0	15	5
27/11/2011	0.0	15	2
28/11/2011	0.0	10	1
29/11/2011	0.0	9	1

30/11/2011	0.0	13	2
01/12/2011	0.0	8	2
02/12/2011	0.0	10	3
03/12/2011	4.0	8	4
04/12/2011	0.0	11	5
05/12/2011	0.0	13	4
06/12/2011	0.0	14	7
07/12/2011	0.0	14	5
08/12/2011	0.0	15	3
09/12/2011	0.0	13	3
10/12/2011	0.0	11	1
11/12/2011	0.0	12	1
12/12/2011	0.0	11	2
13/12/2011	0.0	11	2
14/12/2011	0.0	12	2
15/12/2011	0.0	15	4
16/12/2011	0.0	11	2
17/12/2011	8.4	15	3
18/12/2011	0.0	8	2
19/12/2011	0.0	8	- 1
20/12/2011	0.0	10	1
21/12/2011	0.0	13	5
22/12/2011	0.0	15	8
23/12/2011	0.0	14	0
24/12/2011	0.0	15	12
25/12/2011	0.0	10	-2
26/12/2011	0.0	11	-2
27/12/2011	0.0	10	-2
28/12/2011	0.0	9	-1
29/12/2011	0.0	13	4
30/12/2011	0.0	10	3
31/12/2011	0.0	10	3
01/01/2012	0.0	15	6
02/01/2012	0.0	18	0 4
02/01/2012	0.0	13	
04/01/2012	0.0	16	2
05/01/2012	0.0	15	6
06/01/2012	0.0	18	7
07/01/2012	0.0	14	7
08/01/2012	0.0	13	1
00/01/2012	0.0	13	0
10/01/2012	0.0	14	-2
10/01/2012	0.0	13	-2
12/01/2012	0.0	13	-2
12/01/2012	0.0	0	-1
13/01/2012	0.0	9 5	-0
14/01/2012	0.0	ວ 11	0- 0
10/01/2012	0.0	11	-2
10/01/2012	4.U 7.0		-2
17/01/2012	1.2	Ö	-1
18/01/2012	0.0	9	U

19/01/2012	0.0	13	1
20/01/2012	0.0	14	5
21/01/2012	0.0	16	5
22/01/2012	0.0	15	5
23/01/2012	0.0	15	6
24/01/2012	0.0	15	4
25/01/2012	0.0	15	-2
26/01/2012	0.0	13	-2
27/01/2012	0	12	1
28/01/2012	1	9	2
29/01/2012	0	11	-1
30/01/2012	0	8	-2
31/01/2012	0	10	-1
01/02/2012	0	13	1
02/02/2012	3	11	-1
02/02/2012	0	7	-7
03/02/2012	0	,	-7
04/02/2012	0	7	-7
05/02/2012		, ,	-0
00/02/2012	4.5	9	0
07/02/2012	0	10	-1
08/02/2012	0	9	-0
09/02/2012	0	4	-4
10/02/2012	0	9	-3
11/02/2012	0	9	-6
12/02/2012	0	6	-6
13/02/2012	0	5	-5
14/02/2012	0	9	1
15/02/2012	0	9	-2
16/02/2012	0	11	0
17/02/2012	0	12	-2
18/02/2012	0	13	-3
19/02/2012	0	15	-2
20/02/2012	0	13	0
21/02/2012	0	11	-4
22/02/2012	0	12	-4
23/02/2012	0	15	-3
24/02/2012	0	18	-1
25/02/2012	0	19	1
26/02/2012	0	20	3
27/02/2012	0	19	1
28/02/2012	0	18	1
29/02/2012	0	18	1
01/03/2012	0	18	2
02/03/2012	0	19	1
03/03/2012	0	18	1
04/03/2012	0	18	5
05/03/2012	4.4	18	2
06/03/2012	0	12	1
07/03/2012	0	12	0
08/03/2012	0	14	2

09/03/2012	0	14	2
10/03/2012	0	16	0
11/03/2012	0	17	0
12/03/2012	0	18	1
13/03/2012	0	20	2
14/03/2012	0	24	4
15/03/2012	0	25	5
16/03/2012	0	24	4
17/03/2012	0	22	4
18/03/2012	0	22	5
19/03/2012	0	17	0
20/03/2012	0	13	3
21/03/2012	24.5	11	1
22/03/2012	3.7	13	0
23/03/2012	0	15	1
24/03/2012	0	16	2
25/03/2012	0	18	-
26/03/2012	0	21	3
27/03/2012	0	22	3
28/03/2012	0	20	3
29/03/2012	0	20	1
30/03/2012	0	20	
21/02/2012	0	22	5
01/03/2012	0	24	7
01/04/2012	0	23	7
02/04/2012	0	25	, c
03/04/2012	0	21	o c
04/04/2012	ہ ۵	17	0
05/04/2012	0.5	15	/
06/04/2012	8.9	16	4
0//04/2012	3.4	15	1
08/04/2012	1.5	14	1
09/04/2012	0	17	2
10/04/2012	0	21	2
11/04/2012	3.6	24	5
12/04/2012	0	17	7
13/04/2012	4.8	15	4
14/04/2012	0	16	4
15/04/2012	0	16	3
16/04/2012	0	14	3
17/04/2012	0	12	1
18/04/2012	0.8	20	4
19/04/2012	0	17	5
20/04/2012	4.2	18	7
21/04/2012	0.4	20	7
22/04/2012	0	22	7
23/04/2012	0	18	5
24/04/2012	0	23	5
25/04/2012	0	18	6
26/04/2012	0	25	7
27/04/2012	0	28	12

28/04/2012	0	22	12
29/04/2012	5.6	22	6
30/04/2012	8.5	16	6
01/05/2012	2	14	4
02/05/2012	0	18	5
03/05/2012	0	21	7
04/05/2012	0	23	9
05/05/2012	0.6	23	9
06/05/2012	0	20	8
07/05/2012	0	20	8
08/05/2012	0	25	11
09/05/2012	03	25	13
10/05/2012	0	30	13
11/05/2012	0	32	15
12/05/2012	0	34	17
13/05/2012	0	34	17
14/05/2012	0	20	11
14/03/2012	0	29	11
15/05/2012	0	20	11
10/05/2012	0	20	10
17/05/2012	0	25	10
18/05/2012	0.4	27	13
19/05/2012	0	25	10
20/05/2012	5.4	27	7
21/05/2012	0.6	17	/
22/05/2012	0	18	10
23/05/2012	0	23	8
24/05/2012	0	28	11
25/05/2012	0	30	12
26/05/2012	0	30	15
2//05/2012	0	28	14
28/05/2012	0	29	15
29/05/2012	0	30	15
30/05/2012	6.3	30	14
31/05/2012	0	32	16
01/06/2012	0	33	16
02/06/2012	0	35	18
03/06/2012	17.8	36	16
04/06/2012	0	28	12
05/06/2012	0	28	12
06/06/2012	0	31	16
07/06/2012	0	33	18
08/06/2012	0	36	16
09/06/2012	0	27	10
10/06/2012	0	27	11
11/06/2012	0	31	14
12/06/2012	0	31	10
13/06/2012	0	25	10
14/06/2012	0	26	13
15/06/2012	0	32	16
16/06/2012	0	32	19

17/06/2012	0	33	17
18/06/2012	0	32	17
19/06/2012	0.2	32	17
20/06/2012	20	26	14
21/06/2012	0	30	16
22/06/2012	0	33	13
23/06/2012	0	30	14
24/06/2012	0	32	17
25/06/2012	0	34	17
26/06/2012	0	35	18
27/06/2012	0	36	20
28/06/2012	0.2	38	21
29/06/2012	0	39	23
30/06/2012	0	38	16
01/07/2012	0	35	13
02/07/2012	0	25	9
03/07/2012	0	30	11
04/07/2012	0	33	17
05/07/2012	0	32	17
06/07/2012	0	30	12
07/07/2012	0	29	
08/07/2012	0	37	17
09/07/2012	0	30	
10/07/2012	0	32	15
11/07/2012	0	33	
12/07/2012	0	30	
13/07/2012	0	31	16
14/07/2012	0	36	17
15/07/2012	0	27	13
16/07/2012	0	28	14
17/07/2012	0	31	14
18/07/2012	0	35	17
19/07/2012	0	38	18
20/07/2012	0	35	15
21/07/2012	0	33	14
22/07/2012	0	31	14
23/07/2012	0	30	15
24/07/2012	0	32	15
25/07/2012	0	32	17
26/07/2012	0	35	17
27/07/2012	0	36	20
28/07/2012	7	30	15
29/07/2012	, 0	27	14
30/07/2012	0	30	16
31/07/2012	0	33	10
01/08/2012	0	35	18
02/08/2012	0	35	16
02/00/2012	0	22	10
01/02/2012	0	22	12
05/08/2012	0	33	16
00/2012	0	55	10

06/08/2012	8.8	30	13
07/08/2012	0	28	14
08/08/2012	0	31	15
09/08/2012	0	34	17
10/08/2012	1.2	36	22
11/08/2012	0	38	22
12/08/2012	0	39	18
13/08/2012	0	31	15
14/08/2012	0	33	16
15/08/2012	0	33	17
16/08/2012	0	36	17
17/08/2012	0	34	18
18/08/2012	0	38	20
19/08/2012	0	39	21
20/08/2012	0.4	39	22
21/08/2012	0	38	22
22/08/2012	0	38	20
23/08/2012	9	35	
24/08/2012	0	37	18
25/08/2012	0	36	19
26/08/2012	0	32	13
27/08/2012	0	30	15
28/08/2012	0	35	13
20/08/2012	0	3/	18
30/08/2012	0	34	10
31/08/2012	0	54 27	17
01/00/2012	0	27	12
01/03/2012	0	25	10
02/09/2012	0	21	
03/09/2012	0	25	10
04/09/2012	0	20	15
05/09/2012	0	27	12
00/09/2012	0	20	13
07/09/2012	0	29	13
08/09/2012	0	32	15
09/09/2012	0.7	32	10
10/09/2012	0.1	28	14
11/09/2012	0	28	13
12/09/2012	0	29	14
13/09/2012	0	29	12
14/09/2012	0	23	11
15/09/2012	0	26	12
16/09/2012	0	32	13
17/09/2012	0	31	15
18/09/2012	0	30	16
19/09/2012	0	28	15
20/09/2012	0	27	11
21/09/2012	0	28	13
22/09/2012	0	28	14
23/09/2012	0	27	15
24/09/2012	0	35	15

25/09/2012	0	27	10
26/09/2012	0	26	15
27/09/2012	0.3	19	9
28/09/2012	8.2	19	10
29/09/2012	5.6	15	12
30/09/2012	1.2	15	10
01/10/2012	0	19	5
02/10/2012	0	21	6
03/10/2012	0	24	8
04/10/2012	0	25	11
05/10/2012	0	25	11
06/10/2012	0	25	10
07/10/2012	0	26	11
08/10/2012	0	29	16
09/10/2012	0	30	13
10/10/2012	0	28	13
11/10/2012	0	29	15
12/10/2012	3	24	13
13/10/2012	0	19	9
14/10/2012	0	20	8
15/10/2012	6.5	26	6
16/10/2012	0	16	5
17/10/2012	0	21	7
18/10/2012	0	25	, 8
19/10/2012	0.3	23	16
20/10/2012	19 5	25	12
21/10/2012	49.5	23	11
22/10/2012	17.5	18	10
23/10/2012	0	19	9
24/10/2012	0	20	9
25/10/2012	1.8	20	10
26/10/2012	8.5	19	12
27/10/2012	0.4	18	11
28/10/2012	0	16	1
29/10/2012	0	10	1
30/10/2012	0	13	1
31/10/2012	14.8	10	3
01/11/2012	0	14	6
02/11/2012	0	17	7
03/11/2012	0 9	18	7
0//11/2012	0.5	16	, 9
05/11/2012	5	10	5
06/11/2012	0	1/	5
00/11/2012	0	14	0
07/11/2012	0.2	11	5
00/11/2012	0.2	17	כ ד
10/11/2012	0	17	/ 7
10/11/2012	9	10	/
12/11/2012	U	10	4
12/11/2012	U	10	4
13/11/2012	U	13	1

14/11/2012	0.6	11	7
15/11/2012	4.8	13	8
16/11/2012	0	15	6
17/11/2012	0	16	6
18/11/2012	2.3	12	7
19/11/2012	0.2	12	3
20/11/2012	0	17	3
21/11/2012	0	18	4
22/11/2012	0	19	6
23/11/2012	0	14	4
24/11/2012	0	18	6
25/11/2012	0	16	6
26/11/2012	0	16	9
27/11/2012	1.1	14	3
28/11/2012	2	9	2
29/11/2012	0	8	2
30/11/2012	0	8	1
01/12/2012	0	8	-2
02/12/2012	0	7	-1
03/12/2012	0	9	1
04/12/2012	0	14	5
05/12/2012	1	16	2
06/12/2012	0	10	2
07/12/2012	0	11	1
08/12/2012	0	15	3
09/12/2012	0	10	0
10/12/2012	0	11	-2
11/12/2012	0	13	-1
12/12/2012	0	11	-4
13/12/2012	0	7	-3
14/12/2012	0.4	13	0
15/12/2012	1.1	16	6
16/12/2012	0.1	17	5
17/12/2012	0	19	7
18/12/2012	0	13	6
19/12/2012	0	15	7
20/12/2012	0	15	4
21/12/2012	0	13	5

	hay atha yo			Molinos dripw	ater site			
Nonos dripwa	ter site nº	wollnos aripw	ater site	nº 3 (averaged	every 5	Dri	pwater rates	
1		nº2		davs)				
Date	8 ¹⁸ 0	Date	δ ¹⁸ 0	Date	8 ¹⁸ 0	Date		
(dd/mm/yyyy)	VSMOW	(dd/mm/yyyy)	VSMOW	(dd/mm/yyyy)		(m/dd/vv)	Drops nº I/m	2
22/01/2010	-9.18	22/01/2010	-9 51	06/09/2010	-9 7/	3/24/10	119	23.8
25/02/2010	-10 5/	25/02/2010	-9 19	12/09/2010	-9.81	3/25/10	66	13.0
23/02/2010	-9 58	23/02/2010	-9.53	18/09/2010	-9.73	3/26/10	93	18.6
27/04/2010	-10 30	27/04/2010	-10 70	24/09/2010	-9.73	3/27/10	55	10.0
25/05/2010	-10.33	25/05/2010	-9.86	30/09/2010	-9.62	3/28/10	99	19.8
01/07/2010	-9.96	01/07/2010	-9.40	01/11/2010	-9.36	3/20/10	71	14.2
26/07/2010	-9 56	26/07/2010	-9.18	07/11/2010	-9.01	3/30/10	78	15.6
26/08/2010	-9.56	26/08/2010	-9.04	13/11/2010	-9.13	3/31/10	56	11.2
06/10/2010	-9 52	06/10/2010	-8.95	19/11/2010	-9.45	4/1/10	68	13.6
29/10/2010	-9.75	29/10/2010	-9.28	25/11/2010	-9.56	4/2/10	55	11
10/12/2010	-8.69	10/12/2010	-8.36	13/12/2010	-9.40	4/3/10	128	25.6
14/01/2011	-8.99	14/01/2011	-8.44	19/12/2010	-9.20	4/4/10	107	21.4
02/02/2011	-9.70	02/02/2011	-9.15	25/12/2010	-9.47	4/5/10	105	21
03/03/2011	-9.44	03/03/2011	-8.88	31/12/2010	-9.07	4/6/10	125	25
05/04/2011	-10.15	05/04/2011	-10.30	06/01/2011	-9.16	4/7/10	135	27
11/05/2011	-9.65	03/06/2011	-9.68	11/01/2011	-9.00	4/8/10	118	23.6
03/06/2011	-9.56	07/07/2011	-9.54	17/01/2011	-10.36	4/9/10	119	23.8
07/07/2011	-9.99	04/08/2011	-9.16	23/01/2011	-9.80	4/10/10	119	23.8
04/08/2011	-8.97	08/09/2011	-9.55	29/01/2011	-10.20	4/11/10	136	27.2
08/09/2011	-9.57	07/10/2011	-8.74	01/02/2011	-9.88	4/12/10	130	26
07/10/2011	-8.86	07/11/2011	-8.29	05/02/2011	-8.49	4/13/10	122	24.4
07/11/2011	-8.61	01/12/2011	-10.04	11/02/2011	-9.11	4/14/10	121	24.2
01/12/2011	-9.30	09/01/2012	-8.85	17/02/2011	-8.59	4/15/10	120	24
09/01/2012	-9.47	14/02/2012	-9.09	23/02/2011	-9.00	4/16/10	113	22.6
14/02/2012	-9.51	01/03/2012	-9.04	28/02/2011	-9.44	4/17/10	114	22.8
01/03/2012	-9.45	03/04/2012	-9.43	06/03/2011	-9.54	4/18/10	127	25.4
03/04/2012	-9.31	09/05/2012	-9.39	12/03/2011	-9.45	4/19/10	172	34.4
09/05/2012	-7.90	07/06/2012	-8.80	18/03/2011	-9.94	4/20/10	231	46.2
07/06/2012	-8.99	03/07/2012	-9.23	28/03/2011	-10.06	4/21/10	237	47.4
03/07/2012	-9.47	03/08/2012	-8.23	08/04/2011	-9.41	4/22/10	236	47.2
03/08/2012	-9.10	19/09/2012	-8.78	14/04/2011	-9.50	4/23/10	244	48.8
19/09/2012	-8.93			20/04/2011	-9.60	4/24/10	262	52.4
				26/04/2011	-9.64	4/25/10	260	52
				02/05/2011	-9.50	4/26/10	257	51.4
				08/05/2011	-9.93	4/27/10	240	48
				13/05/2011	-9.19	4/28/10	205	41
				19/05/2011	-9.81	4/29/10	205	41
				24/05/2011	-9.48	4/30/10	205	41
				29/05/2011	-9.80	5/1/10	199	39.8
				01/06/2011	-9.66	5/2/10	198	39.6
				06/06/2011	-9.74	5/3/10	227	45.4
				12/06/2011	-9.49	5/4/10	247	49.4
				18/06/2011	-9.58	5/5/10	250	50
				24/06/2011	-9.54	5/6/10	252	50.4
				30/06/2011	-9.11	5/7/10	257	51.4
				05/07/2011	-9.66	5/8/10	252	50.4
				10/07/2011	-9.94	5/9/10	249	49.8
				15/07/2011	-9.32	5/10/10	248	49.6
				20/07/2011	-9.01	5/11/10	251	50.2

25/07/2011

30/07/2011

02/08/2011

06/08/2011

11/08/2011

16/08/2011

21/08/2011

26/08/2011

01/09/2011

-9.15

-9.31

-9.39

-9.94

-9.52

-9.25

-9.14

-9.21

-9.33

5/12/10

5/13/10

5/14/10

5/15/10

5/16/10

5/17/10

5/18/10

5/19/10

5/20/10

49.6

47.6

47.2

44.4

43.2

39.6

35.6

32.8

30

248

238

236

222

216

198

178

164

150

07/09/2011	-9.39	5/21/10	148	29.6
12/09/2011	-9.28	5/22/10	141	28.2
17/09/2011	-9.27	5/23/10	128	25.6
22/09/2011	-9.39	5/24/10	115	23
27/09/2011	-9.54	5/25/10	111	22.2
03/10/2011	-9.37	5/26/10	112	22.4
09/10/2011	-9.18	5/27/10	106	21.2
14/10/2011	-8.91	5/28/10	98	19.6
19/10/2011	-8.64	5/29/10	88	17.6
24/10/2011	-9.32	5/30/10	84	16.8
29/10/2011	-9.34	5/31/10	89	17.8
03/11/2011	-8.77	6/1/10	94	18.8
08/11/2011	-9.33	6/2/10	95	19
13/11/2011	-9.42	6/3/10	94	18.8
18/11/2011	-9.46	6/4/10	83	16.6
23/11/2011	-9.22	6/5/10	84	16.8
28/11/2011	-9.04	6/6/10	86	17.2
03/12/2011	-9.13	6/7/10	87	17.4
08/12/2011	-8.77	6/8/10	95	19
13/12/2011	-9.46	6/9/10	98	19.6
18/12/2011	-9.69	6/10/10	89	17.8
23/12/2011	-9.42	6/11/10	81	16.2
28/12/2011	-9.29	6/12/10	79	15.8
11/01/2012	-9.36	6/13/10	74	14.8
16/01/2012	-9.61	6/14/10	74	14.8
21/01/2012	-9.75	6/15/10	75	15
26/01/2012	-9.57	6/16/10	73	14.6
31/01/2012	-9.36	6/17/10	70	14
05/02/2012	-9.33	6/18/10	69	13.8
03/03/2012	-9.61	6/19/10	72	14.4
08/03/2012	-10.23	6/20/10	70	14
13/03/2012	-9.96	6/21/10	60	12
18/03/2012	-9.94	6/22/10	60	12
23/03/2012	-10.23	6/23/10	66	13.2
28/03/2012	-10.24	6/24/10	84	16.8
05/04/2012	-9.87	6/25/10	87	17.4
10/04/2012	-9.70	6/26/10	84	16.8
15/04/2012	-9.91	6/27/10	80	16
20/04/2012	-9.58	6/28/10	76	15.2
25/04/2012	-9.56	6/29/10	74	14.8
30/04/2012	-9.50	6/30/10	/6	15.2
11/05/2012	-9.46	//1/10	/6	15.2
16/05/2012	-9.77	7/2/10	/6	15.2
21/05/2012	-9.82	//3/10	69	13.8
26/05/2012	-9.60	7/4/10	66	13.2
31/05/2012	-9.83	7/5/10	66	13.2
05/06/2012	-9.75	7/6/10	67	13.4
10/06/2012	-10.03	7/7/10	55	13.2
15/06/2012	-10.01	7/8/10	/1	14.2
20/06/2012	-9.85	7/9/10	71	14.2
25/06/2012	-9.76	7/10/10	/1	14.2
30/06/2012	-9.37	7/11/10	74	14.8
25/07/2012	-9.27	7/12/10	77	15.4
30/07/2012	-8.98	7/13/10	79	15.8
05/08/2012	-8.86	7/14/10	/9 70	15.8
10/08/2012	-9.19	7/15/10	72	14.4
15/08/2012	-8.86	7/16/10	12	14.4
20/08/2012	-8.92	7/1//10	66 CE	13.2
20/08/2012	-9.17	7/10/10 7/10/10	05	12.0
50/08/2012	-8.79	7/19/10	69 75	13.8 1
		7/20/10	/5	15
		7/21/10	/ð 71	14.2
		//22/10	/1	14.2

7/23/10	61	12.2
7/24/10	59	11.8
7/25/10	63	12.6
7/26/10	64	12.8
7/27/10	65	13
7/28/10	63	12.6
7/29/10	66	13.2
7/30/10	64	12.8
7/31/10	60	12
8/1/10	60	12
8/2/10	55	11
8/3/10	52	10.4
8/4/10	54	10.8
8/5/10	52	10.4
8/6/10	48	9.6
8/7/10	45	9
8/8/10	44	8.8
8/9/10	43	8.6
8/10/10	42	8.4
8/11/10	41	8.2
8/12/10	47	9.4
8/13/10	46	9.2
8/14/10	46	9.2
8/15/10	44	8.8
8/16/10	40	8
8/17/10	40	8
8/18/10	40	8 8
8/19/10	40	0.0 8
8/20/10	33	66
8/21/10	33	6.2
8/22/10	34	6.8
8/23/10	38	7.6
8/24/10	30	6.4
8/24/10	30	6
8/25/10	30	64
8/27/10	22	6.6
8/28/10	33	6.0
8/28/10	32	0.4 6.4
8/29/10	22	6.4
8/30/10	22	6.6
0/1/10	22	6.6
9/1/10	33	0.0 E 0
9/2/10	29	5.6 E
9/3/10	25	5
9/4/10 0/5/10	20	5.2
9/5/10	20	5.2
9/6/10	28	5.0
9/7/10	29	5.8
9/8/10	25	2
9/9/10	21	4.2
9/10/10	21	4.2
9/11/10	21	4.2
9/12/10	19	3.8
9/13/10	18	3.6
9/14/10	18	3.0
9/15/10	19	۵.۵
9/16/10	20	4
9/1//10	20	4
9/18/10	1/	3.4
9/19/10	16	3.2
9/20/10	16	3.2
9/21/10	15	3
9/22/10	15	3
9/23/10	15	3

9/24/10	15	3
9/25/10	15	3
9/26/10	13	2.6
9/27/10	12	2.4
9/28/10	12	2.4
9/29/10	13	2.6
9/30/10	13	2.6
10/1/10	14	2.8
10/2/10	14	2.8
10/3/10	17	3.4
10/4/10	15	3
10/5/10	12	2.4
10/6/10	10	2
10/7/10	9	1.8
10/8/10	9	1.8
10/9/10	9	1.8
10/10/10	8	1.6
10/11/10	8	1.6
10/12/10	8	1.6
10/13/10	14	2.8
10/14/10	22	4.4
10/15/10	31	6.2
10/16/10	35	7
10/17/10	35	7
10/18/10	34	6.8
10/19/10	34	6.8
10/20/10	33	6.6
10/21/10	31	6.2
10/22/10	32	6.4
10/23/10	34	6.8
10/24/10	37	7.4
10/25/10	34	6.8
10/26/10	32	6.4
10/27/10	31	6.2
10/28/10	31	6.2
10/29/10	38	7.6
10/30/10	39	7.8
10/31/10	48	9.6
11/1/10	40	8
11/2/10	33	66
11/3/10	32	6.4
11/4/10	28	5.6
11/5/10	31	6.2
11/6/10	35	7
11/7/10	43	86
11/8/10	51	10.2
11/9/10	51	10.2
11/10/10	38	7.6
11/11/10	28	5.6
11/12/10	20	6.2
11/12/10	40	0.2 Q
11/13/10	40	86
11/14/10	43	5.0 7.4
11/16/10	21	6.2
11/10/10	20	7.9
11/10/10	37 25	7.0 7
11/10/10 11/10/10	22	ر ۲
11/ <u>20/10</u>	33 25	0.0
11/20/10	20	/ 70
11/22/10	24	7.ð 20
11/22/10	34 20	0.ð
11/23/1U	3U 21	ט בי
11/24/10	31	b.2 го
11/25/10	29	5.8

11/26/10	31	6.2
11/27/10	33	6.6
11/28/10	32	6.4
11/29/10	28	5.6
11/30/10	32	6.4
12/1/10	25	5
12/1/10	23	11
12/2/10	22	4.4
12/3/10	19	5.8
12/4/10	21	4.2
12/5/10	23	4.6
12/6/10	27	5.4
12/7/10	28	5.6
12/8/10	27	5.4
12/9/10	24	4.8
12/10/10	30	6
12/11/10	36	7.2
12/12/10	36	7.2
12/13/10	33	6.6
12/14/10	33	6.0
12/14/10	24	6.2
12/15/10	54 25	0.0
12/16/10	35	
12/1//10	38	7.6
12/18/10	34	6.8
12/19/10	32	6.4
12/20/10	32	6.4
12/21/10	36	7.2
12/22/10	35	7
12/23/10	30	6
12/24/10	28	5.6
12/25/10	27	5.4
12/26/10	29	5.8
12/27/10	31	6.2
12/28/10	31	6.2
12/29/10	31	6.2
12/30/10	32	6.4
12/31/10	31	6.7
1/1/11	33	6.6
1/2/11	34	6.8
1/2/11	24	6.0
1/5/11	52	0.4
1/4/11	32	6.4
1/5/11	30	6
1/6/11	29	5.8
1/7/11	29	5.8
1/8/11	29	5.8
1/9/11	30	6
1/10/11	30	6
1/11/11	29	5.8
1/12/11	33	6.6
1/13/11	37	7.4
1/14/11	35	7
1/15/11	30	6
1/16/11	31	62
1/17/11	30	6
1/10/11	30	6
1/10/11	30	6
1/20/11	20	0
1/20/11 1/21/11	30	б С
1/21/11	30	6
1/22/11	30	6
1/23/11	29	5.8
1/24/11	30	6
1/25/11	31	6.2
1/26/11	31	6.2
1/27/11	28	5.6

1/28/11	28	5.6
1/29/11	29	5.8
1/30/11	27	5.4
1/31/11	27	5.4
2/1/11	26	5.2
2/2/11	27	5.4
2/3/11	20	4
2/3/11 2/4/11	20	1 1
2/ 4 / 11	22	
2/5/11	22	4.4
2/6/11	23	4.6
2///11	27	5.4
2/8/11	32	6.4
2/9/11	31	6.2
2/10/11	32	6.4
2/11/11	31	6.2
2/12/11	29	5.8
2/13/11	30	6
2/14/11	28	5.6
2/15/11	27	5.4
2/16/11	29	5.8
2/17/11	28	5.6
2/18/11	26	5.2
2/10/11	24	/ 8
2/20/11	24	4.0
2/20/11	24	4.0
2/21/11	23	4.0
2/22/11	27	5.4
2/23/11	28	5.6
2/24/11	27	5.4
2/25/11	26	5.2
2/26/11	26	5.2
2/27/11	28	5.6
2/28/11	28	5.6
3/1/11	29	5.8
3/2/11	27	5.4
3/3/11	31	6.2
3/4/11	32	6.4
3/5/11	33	6.6
3/6/11	33	6.6
3/7/11	33	6.6
$\frac{3}{1}$	33	0.0 F 0
3/8/11	29	5.8
3/9/11	29	5.8
3/10/11	29	5.8
3/11/11	27	5.4
3/12/11	29	5.8
3/13/11	28	5.6
3/14/11	27	5.4
3/15/11	28	5.6
3/16/11	37	7.4
3/17/11	49	9.8
3/18/11	71	14.2
3/19/11	80	16
3/20/11	83	16.6
3/21/11	78	15.6
2/22/11	70	11
2/22/11	70	12 2
3/23/11 2/24/44	00	13.2
3/24/11	6/ 	13.4
3/25/11	76	15.2
3/26/11	84	16.8
3/27/11	97	19.4
3/28/11	88	17.6
3/29/11	82	16.4
3/30/11	75	15
3/31/11	68	13.6

4/1/11	72	14.4
4/2/11	77	15.4
4/3/11	72	14.4
4/4/11	64	12.8
4/5/11	55	11
4/6/11	59	11.8
4/7/11	61	12.2
4/8/11	66	13.2
4/9/11	68	13.6
4/10/11	65	13
4/11/11	64	12.8
4/12/11	63	12.6
4/13/11	69	13.8
4/14/11	73	14.6
4/15/11	69	13.8
4/16/11	62	12.4
4/17/11	63	12.6
4/18/11	63	12.6
4/19/11	65	13
4/20/11	64	12.8
4/21/11	68	13.6
4/22/11	77	15.4
4/23/11	92	18.4
4/24/11	95	10.4
4/25/11	93	18.6
4/26/11	99	10.0
4/20/11	35 117	19.0
4/2//11	117	20.4
4/20/11	140	29.2
4/29/11	140	29.2
4/30/11	101	32.2
5/1/11	221	44.2
5/2/11	231	46.2
5/3/11	199	39.8
5/4/11	178	35.6
5/5/11	174	34.8
5/6/11	183	36.6
5///11	203	40.6
5/8/11	199	39.8
5/9/11	184	36.8
5/10/11	168	33.6
5/11/11	173	34.6
5/12/11	180	36
5/13/11	182	36.4
5/14/11	176	35.2
5/15/11	166	33.2
5/16/11	153	30.6
5/17/11	152	30.4
5/18/11	157	31.4
5/19/11	148	29.6
5/20/11	135	27
5/21/11	128	25.6
5/22/11	127	25.4
5/23/11	120	24
5/24/11	119	23.8
5/25/11	121	24.2
5/26/11	122	24.4
5/27/11	120	24
5/28/11	118	23.6
5/29/11	110	22
5/30/11	111	22.2
5/31/11	112	22.4
6/1/11	128	25.6
6/2/11	134	26.8

6/3/11	133	26.6
6/4/11	114	22.8
6/5/11	150	30
6/6/11	152	30.4
6/7/11	154	30.8
6/8/11	146	29.2
6/9/11	138	27.6
6/10/11	132	26.4
6/11/11	124	24.8
6/12/11	120	24
6/13/11	118	23.6
6/14/11	101	20.2
6/15/11	98	19.6
6/16/11	99	19.8
6/17/11	101	20.2
6/18/11	93	18.6
6/19/11	80	16
6/20/11	81	16.2
6/21/11	79	15.8
6/22/11	79	15.8
6/23/11	73	14.6
6/24/11	69	13.8
6/25/11	66	13.2
6/26/11	69	13.8
6/27/11	72	14.4
6/28/11	74	14.8
6/29/11	70	14
6/30/11	69	13.8
7/1/11	73	14.6
7/2/11	81	16.2
7/3/11	81	16.2
7/4/11	66	13.2
7/5/11	64	12.8
7/6/11	70	14
7/7/11	81	16.2
7/8/11	68	13.6
7/9/11	67	13.0
7/10/11	70	14
7/11/11	70	14.2
7/12/11	73	14.6
7/13/11	62	17.0
7/1//11	56	11.7
7/15/11	58	11.2
7/16/11	61	12.2
7/17/11	65	12.2
7/10/11	62	12 /
7/10/11	61	12.4
7/20/11	51	10.2
7/20/11	50	11.6
7/21/11	28	11.0
7/22/11	58	11.0
7/23/11	55	11.2
7/24/11	50	11.2
7/25/11	50	11.2
7/20/11	54	10.0
7/20/11	21	10.2
7/20/11 7/20/11	40 E 1	9.2
7/29/11	51	10.2
7/30/11	51	10.2
//31/11	52	10.4
8/1/11 0/2/11	54	10.8
0/2/11 0/2/44	48	9.6
8/3/11	42	8.4
8/4/11	44	8.8

8/5/11	49	9.8
8/6/11	59	11.8
8/7/11	64	12.8
8/8/11	53	10.6
8/9/11	50	10
8/10/11	51	10.2
8/11/11	53	10.6
8/12/11	51	10.2
8/13/11	52	10.4
8/14/11	49	9.8
8/15/11	43	8.6
8/16/11	42	8.4
8/17/11	42	8.4
0/1//11	42	0.4
8/10/11 8/10/11	40	9.2
8/19/11	40	0
8/20/11	41	0.2
8/21/11	42	8.4
8/22/11	44	8.8
8/23/11	40	8
8/24/11	39	7.8
8/25/11	39	7.8
8/26/11	35	7
8/27/11	27	5.4
8/28/11	30	6
8/29/11	33	6.6
8/30/11	32	6.4
8/31/11	34	6.8
9/1/11	30	6
9/2/11	29	5.8
9/3/11	29	5.8
9/4/11	27	5.4
9/5/11	22	4.4
9/6/11	22	4.4
9/7/11	25	5
9/8/11	23	51
9/9/11	26	5.7
0/10/11	20	J.Z 1 Q
0/11/11	24	4.0
$\frac{3}{12}$	21	4.2
9/12/11	20	4
9/13/11	22	4.4
9/14/11	20	4
9/15/11	19	3.8
9/16/11	20	4
9/17/11	18	3.6
9/18/11	20	4
9/19/11	17	3.4
9/20/11	17	3.4
9/21/11	17	3.4
9/22/11	17	3.4
9/23/11	18	3.6
9/24/11	18	3.6
9/25/11	16	3.2
9/26/11	14	2.8
9/27/11	14	2.8
9/28/11	15	3
9/29/11	15	3
9/30/11	13	2.6
10/1/11	13	2.6
10/2/11	13	2.6
10/3/11	13	2.6
10/4/11	12	2.0
10/5/11	17	2.7
10/6/11	12	2.4 2.6
10/0/11	13	2.0

10/7/11	11	2.2
10/8/11	11	2.2
10/9/11	9	1.8
10/10/11	11	2.2
10/11/11	11	2.2
10/12/11	11	2.2
10/13/11	10	2
10/14/11	10	2
10/15/11	10	1 0
10/15/11	9	1.0
10/10/11	9	1.8
10/1//11	10	2
10/18/11	11	2.2
10/19/11	10	2
10/20/11	10	2
10/21/11	10	2
10/22/11	11	2.2
10/23/11	11	2.2
10/24/11	15	3
10/25/11	13	2.6
10/26/11	9	1.8
10/27/11	12	2.0
10/2//11	12	2.4
10/20/11	0	1.0
10/29/11	10	2
10/30/11	10	2
10/31/11	9	1.8
11/1/11	10	2
11/2/11	12	2.4
11/3/11	13	2.6
11/4/11	13	2.6
11/5/11	12	2.4
11/6/11	10	2
11/7/11	10	2
11/8/11	4	0.8
11/9/11	10	2
11/10/11	9	1 9
11/11/11	9	1.0
11/11/11	9	1.0
11/12/11	8	1.6
11/13/11	9	1.8
11/14/11	9	1.8
11/15/11	7	1.4
11/16/11	8	1.6
11/17/11	7	1.4
11/18/11	8	1.6
11/19/11	8	1.6
11/20/11	8	1.6
11/21/11	7	1.4
11/22/11	10	2
11/23/11	14	2.8
11/24/11	22	<u>_</u> .e
11/25/11	22	4.4
11/25/11	23	4.0
11/20/11	23	4.0
11/2//11	22	4.4
11/28/11	23	4.6
11/29/11	22	4.4
11/30/11	22	4.4
12/1/11	30	6
12/2/11	24	4.8
12/3/11	23	4.6
12/4/11	22	4.4
12/5/11	22	4.4
12/6/11	23	4.6
12/7/11	20	o
/ · /	20	+
17/2/11	10	36
12/9/11	19	3.8
----------------------	------	-----
12/10/11	21	4.2
12/11/11	20	4
12/12/11	18	3.6
12/13/11	17	3.4
12/14/11	18	3.6
12/15/11	17	3.4
12/16/11	13	2.6
12/17/11	17	3.4
12/18/11	16	3.2
12/19/11	15	3
12/20/11	15	3
12/21/11	15	3
12/22/11	14	2.8
12/23/11	14	2.0
12/24/11 12/25/11	14	2.8
12/25/11	15	2.0
12/20/11	14	2.0
12/2//11	13	2.0
12/20/11	17	2.0
12/29/11	14	2.0
12/30/11	14	2.0
1/1/12	14	2.0
1/2/12	14	2.0
1/3/12	13	2.0
1/4/12	13	2.0
1/5/12	12	2.4
1/6/12	13	2.6
1/7/12	12	2.4
1/8/12	13	2.6
1/9/12	13	2.6
1/10/12	13.0	2.6
1/11/12	14.0	2.8
1/12/12	13.0	2.6
1/13/12	14.0	2.8
1/14/12	13.0	2.6
1/15/12	13.0	2.6
1/16/12	12.0	2.4
1/17/12	12.0	2.4
1/18/12	10.0	2.0
1/19/12	10.0	2.0
1/20/12	11.0	2.2
1/21/12	11.0	2.2
1/22/12	10.0	2.0
1/23/12	11.0	2.2
1/24/12	10.0	2.0
1/25/12	9.0	1.8
1/26/12	10.0	2.0
1/27/12	10.0	2.0
1/28/12	9.0	1.8
1/29/12	8.0	1.6
1/30/12	9.0	1.8
1/31/12	8.0	1.6
2/1/12	9.0	1.8
2/2/12	9.0	1.8
2/3/12	8.0	1.6
2/4/12	8.0	1.6
2/5/12	8.U	1.6
2/0/12	9.0	1.8
2/1/12	8.U	1.6
2/8/12	8.0	1.6
2/9/12	7.0	1.4

2/10/12	7.0	1.4
2/11/12	7.0	1.4
2/12/12	7.0	1.4
2/13/12	7.0	1.4
2/14/12	7.0	1.4
2/15/12	9.0	1.8
2/16/12	7.0	1.4
2/17/12	8.0	1.6
2/18/12	7.0	1.4
2/19/12	8.0	1.6
2/20/12	7.0	1.4
2/21/12	7.0	1.4
2/22/12	6.0	1.2
2/23/12	7.0	1.4
2/24/12	7.0	1.4
2/25/12	6.0	1.2
2/26/12	7.0	1.4
2/27/12	6.0	1.2
2/28/12	7.0	1.4
2/29/12	6.0	1.2
3/1/12	6.0	1.2
3/2/12	6.0	1.2
3/3/12	6.0	1.2
3/4/12	6.0	1.2
3/5/12	6.0	1.2
2/6/12	6.0	1.2
2/7/12 2/7/12	5.0	1.2
3/7/12	5.0	1.0
3/8/12	6.0 F 0	1.2
3/9/12	5.0	1.0
3/10/12	5.0	1.0
3/11/12	6.0	1.2
3/12/12	5.0	1.0
3/13/12	6.0	1.2
3/14/12	7.0	1.4
3/15/12	7.0	1.4
3/16/12	7.0	1.4
3/17/12	8.0	1.6
3/18/12	7.0	1.4
3/19/12	8.0	1.6
3/20/12	7.0	1.4
3/21/12	7.0	1.4
3/22/12	8.0	1.6
3/23/12	7.0	1.4
3/24/12	7.0	1.4
3/25/12	7.0	1.4
3/26/12	7.0	1.4
3/27/12	7.0	1.4
3/28/12	7.0	1.4
3/29/12	7.0	1.4
3/30/12	7.0	1.4
3/31/12	7.0	1.4
4/1/12	6.0	1.2
4/2/12	7.0	1.4
4/3/12	7.0	1.4
4/4/12	10.0	2.0
4/5/12	7.0	1 /
-, <i>3</i> , ±2 Δ/6/12	7.0	1.4 1 /
τ, 0/ ±2 Λ/7/10	7.0	1.4 1 /
+///⊥∠ //8/10	7.0	1.4 1 /
+/0/12 1/0/12	7.0	1.4
4/3/12 1/10/12	7.0	1.4
4/10/12 4/11/12	7.0	1.4
4/11/12	7.0	1.4
4/12/12	6.0	1.2

4/13/12	7.0	1.4
4/14/12	7.0	1.4
4/15/12	6.0	1.2
4/16/12	6.0	1.2
4/17/12	5.0	1.0
4/18/12	6.0	1.2
4/19/12	6.0	1.2
4/20/12	6.0	1.2
4/21/12	5.0	1.0
4/22/12	5.0	1.0
4/23/12	6.0	1.2
4/24/12	6.0	1.2
4/25/12	5.0	1.0
4/26/12	5.0	1.0
4/27/12	5.0	1.0
4/28/12	5.0	1.0
4/29/12	5.0	1.0
4/30/12	4.0	0.8
5/1/12	4.0	0.8
5/2/12	4.0	0.8
5/3/12	4.0	0.8
5/4/12	4.0	0.8
5/5/12	4.0	0.8
5/6/12	4.0	0.8
5/7/12	3.0	0.6
5/8/12	4.0	0.8
5/9/12	4.0	0.8
5/10/12	3.0	0.6
5/11/12	4.0	0.8
5/12/12	4.0	0.8
5/13/12	3.0	0.6
5/14/12	4.0	0.8
5/15/12	3.0	0.6
5/16/12	4.0	0.8
5/17/12	3.0	0.6
5/18/12	4.0	0.8
5/19/12	3.0	0.6
5/20/12	4.0	0.8
5/21/12	4.0	0.8
5/22/12	3.0	0.6
5/23/12	3.0	0.6
5/24/12	3.0	0.6
5/25/12	4.0	0.8
5/26/12	3.0	0.6
5/27/12	4.0	0.8
5/28/12	4.0	0.8
5/29/12	4.0	0.8
5/30/12	4.0	0.8
5/31/12	5.0	1.0
6/1/12	4.0	0.8
6/2/12	4.0	0.8
6/3/12	4.0	0.0
6/4/12	5.0	1.0
6/5/12	4.0	0.8
6/6/12	4.0	0.0 0 R
6/7/12	4.0 1 0	0.0 0.9
6/8/12	4.0 5 0	0.8 1 0
6/0/12	5.0	1.0
6/10/12	J.0 1 0	1.U
6/11/12	4.0 1 0	0.0 0.9
6/12/12	4.0 5 0	1.0
6/12/12	J.U 4 O	1.U
6/14/12	4.U E O	1.0
0/14/12	5.0	1.0

6/15/12	4.0	0.8
6/16/12	4.0	0.8
6/17/12	4.0	0.8
6/18/12	5.0	1.0
6/19/12	4.0	0.8
6/20/12	4.0	0.8
6/21/12	4.0	0.8
6/22/12	4.0	0.8
6/23/12	4.0	0.8
6/24/12	5.0	1.0
6/25/12	4.0	0.8
6/26/12	4.0	0.8
6/27/12	4.0	0.8
6/28/12	4.0	0.8
6/29/12	5.0	1.0
6/30/12	4.0	0.8
7/1/12	4.0	0.8
7/2/12	4.0	0.8
7/3/12	5.0	1.0
7/4/12		
7/5/12		
7/6/12		
7/7/12		
<i>, ,</i> 7/8/12		
7/9/12		
7/10/12		
7/11/12	6.000000	1.200000
7/12/12	6.000000	1.200000
7/13/12	5.000000	1.000000
7/14/12	6.000000	1.200000
7/15/12	5.000000	1.000000
7/16/12	5.000000	1.000000
7/17/12	5.000000	1.000000
7/18/12	5.000000	1.000000
7/19/12	5.000000	1.000000
7/20/12	5.000000	1.000000
7/21/12	4.000000	0.800000
7/22/12	4.000000	0.800000
7/23/12	5.000000	1.000000
7/24/12	4 000000	0.800000
7/25/12	4 000000	0.800000
7/26/12	4 000000	0.800000
7/27/12	3 000000	0.600000
7/28/12	4 000000	0.000000
7/29/12	3 000000	0.600000
7/30/12	3,000000	0.600000
7/31/12	4 000000	0.800000
8/1/12	4.000000	0.800000
8/2/12	3 000000	0.600000
8/2/12	3.000000	0.000000
$\frac{0}{3}\frac{12}{12}$	4 000000	0.000000
8/5/12	4.000000	0.800000
0/ <i>5</i> /12 0/6/12	4.000000	0.800000
8/0/12 8/7/12	4.000000	0.800000
Q/Q/17		0.000000
0/0/12 8/0/17	3 000000	0.00000
0/9/12	3.000000	
0/10/12	4.000000	0.000000
0/11/12 0/12/12	4.000000	0.000000
0/12/12	4.000000	0.000000
0/13/12 0/11/12	4.000000	0.000000
0/14/12 0/15/12	4.000000	0.000000
o/15/12	4.000000	0.00000
8/16/12	4.000000	0.800000

8/17/12	4.000000	0.800000
8/18/12	4.000000	0.800000
8/19/12	4.000000	0.800000
8/20/12	4.000000	0.800000
8/21/12	3.000000	0.600000
8/22/12	4.000000	0.800000
8/23/12	4.000000	0.800000
8/24/12	4 000000	0.800000
8/25/12	3,000000	0.600000
0/25/12	3.000000	0.000000
0/20/12	5.000000	0.000000
8/2//12	4.000000	0.800000
8/28/12	4.000000	0.800000
8/29/12	3.000000	0.600000
8/30/12	4.000000	0.800000
8/31/12	3.000000	0.600000
9/1/12	4.000000	0.800000
9/2/12	3.000000	0.600000
9/3/12	4.000000	0.800000
9/4/12	4.000000	0.800000
9/5/12	4 000000	0.800000
0/6/12	3,000000	0.600000
0/7/12	3.000000	0.000000
9/7/12	3.000000	0.600000
9/8/12	6.000000	1.200000
9/9/12	8.000000	1.600000
9/10/12	7.000000	1.400000
9/11/12	8.000000	1.600000
9/12/12	7.000000	1.400000
9/13/12	8.000000	1.600000
9/14/12	8.000000	1.600000
9/15/12	9.000000	1.800000
9/16/12	8.000000	1.600000
9/17/12	9.000000	1.800000
9/18/12	11 000000	2 200000
0/10/12	14.000000	2.200000
0/20/12	12,000000	2.800000
9/20/12	13.000000	2.000000
9/21/12	14.000000	2.800000
9/22/12	13.000000	2.600000
9/23/12	20.000000	4.000000
9/24/12	23.000000	4.600000
9/25/12	26.000000	5.200000
9/26/12	27.000000	5.400000
9/27/12	27.000000	5.400000
9/28/12	27.000000	5.400000
9/29/12	28.000000	5.600000
9/30/12	27.000000	5,400000
10/1/12	28 000000	5 600000
10/1/12	28.000000	5 600000
10/2/12	28.000000	5.000000
10/5/12	27.000000	5.400000
10/4/12	28.000000	5.600000
10/5/12	28.000000	5.600000
10/6/12	29.000000	5.800000
10/7/12	30.000000	6.000000
10/8/12	30.000000	6.000000
10/9/12	31.000000	6.200000
10/10/12	32.000000	6.400000
10/11/12	28.000000	5.600000
10/12/12	27,000000	5,400000
10/13/12	27 000000	5 400000
10/1//12	30 000000	6 000000
10/15/12	30.000000	5 600000
10/15/12	20.000000	
10/16/12	29.000000	5.800000
10/1//12	30.000000	6.000000
10/18/12	30.000000	6.000000

10/19/12	30.000000	6.000000
10/20/12	31.000000	6.200000
10/21/12	32.000000	6.400000
10/22/12	34.000000	6.800000
10/23/12	39.000000	7.800000
10/24/12	49.000000	9.800000
10/25/12	53.000000	10.600000
10/26/12	61.000000	12.200000
10/27/12	59.000000	11.800000
10/28/12	50.000000	10.000000
10/29/12	49.000000	9.800000
10/30/12	57.000000	11.400000
10/31/12	54.000000	10.800000
11/1/12	55.000000	11.000000
11/2/12	50.000000	10.000000
11/3/12	52.000000	10.400000
11/4/12	53.000000	10.600000
11/5/12	45.000000	9.000000
11/6/12	41.000000	8.200000
11/7/12	19.000000	3.800000

Date (dd/mm/yyyy)	NAO index
01/01/2010	-1.704
02/01/2010	-2.215
03/01/2010	-2.25
04/01/2010	-1.92
05/01/2010	-1.42
06/01/2010	-1.251
07/01/2010	-1.205
08/01/2010	-1.033
09/01/2010	-0.895
10/01/2010	-0.872
11/01/2010	-0.957
12/01/2010	-0 79/
12/01/2010	-0.53
14/01/2010	-0.55 0.425
14/01/2010	-0.423
15/01/2010	-0.155
16/01/2010	0.256
17/01/2010	0.243
18/01/2010	0.285
19/01/2010	0.266
20/01/2010	-0.063
21/01/2010	-0.341
22/01/2010	-0.205
23/01/2010	-0.236
24/01/2010	-0.193
25/01/2010	-0.096
26/01/2010	-0.025
27/01/2010	-0.326
28/01/2010	-0.224
29/01/2010	-0.336
30/01/2010	-0.328
31/01/2010	-0 128
01/02/2010	-0.126
01/02/2010	_0.100
02/02/2010	0.250
03/02/2010	-0.559
04/02/2010	-0.421
05/02/2010	-0.766
00/02/2010	-0.985
0//02/2010	-1.02
08/02/2010	-1.202
09/02/2010	-1.136
10/02/2010	-1.027
11/02/2010	-0.981
12/02/2010	-1.074
13/02/2010	-1.29
14/02/2010	-1.374
15/02/2010	-1.4
16/02/2010	-1.353
17/02/2010	-1.299
18/02/2010	-1.134
19/02/2010	-1.07
,,	1.07

20/02/2010	-1.109	20/02/2010	2.55
21/02/2010	-1.065	21/02/2010	-0.67
22/02/2010	-0.817	22/02/2010	-0.09
23/02/2010	-0.532	23/02/2010	1.25
24/02/2010	-0.341	24/02/2010	2.28
25/02/2010	-0.219	25/02/2010	1.11
26/02/2010	-0.262	26/02/2010	1.31
27/02/2010	-0.339	27/02/2010	-1.47
28/02/2010	-0.276	28/02/2010	0.26
01/03/2010	-0.323	01/03/2010	1.25
02/03/2010	-0.396	02/03/2010	-1.75
03/03/2010	-0.546	03/03/2010	-1.11
04/03/2010	-0.658	04/03/2010	1.41
05/03/2010	-0.63	05/03/2010	-0.68
06/03/2010	-0.492	06/03/2010	-2.34
07/03/2010	-0.606	07/03/2010	-1.03
08/03/2010	-0.905	08/03/2010	-1.20
09/03/2010	-1,113	09/03/2010	-1.26
10/03/2010	-1.144	10/03/2010	0.41
11/03/2010	-0.897	11/03/2010	-0.18
12/03/2010	-0.751	12/03/2010	-0.22
13/03/2010	-0.555	13/03/2010	0.47
14/03/2010	-0.388	14/03/2010	0.49
15/03/2010	-0.299	15/03/2010	-0.07
16/03/2010	-0.158	16/03/2010	-0.75
17/03/2010	0.098	17/03/2010	-0.75
18/03/2010	0.059	18/03/2010	-0.40
19/03/2010	0.066	19/03/2010	-0.18
20/03/2010	0.318	20/03/2010	-0.31
21/03/2010	0.52	21/03/2010	-0.54
22/03/2010	0.46	22/03/2010	-0.08
23/03/2010	0.303	23/03/2010	-1.04
24/03/2010	-0.036	24/03/2010	-1.37
25/03/2010	-0.324	25/03/2010	-0.60
26/03/2010	-0.161	26/03/2010	1.12
27/03/2010	-0.167	27/03/2010	1.82
28/03/2010	-0.311	28/03/2010	0.49
29/03/2010	-0.171	29/03/2010	0.34
30/03/2010	-0.034	30/03/2010	2.03
31/03/2010	-0.121	31/03/2010	1.80
01/04/2010	-0.166	01/04/2010	1.10
02/04/2010	-0.064	02/04/2010	0.21
03/04/2010	0.028	03/04/2010	-0.68
04/04/2010	0.04	04/04/2010	0.62
05/04/2010	0.391	05/04/2010	-1.02
06/04/2010	0.824	06/04/2010	-1.70
07/04/2010	0.881	07/04/2010	-0.65
08/04/2010	0.519	08/04/2010	-0.81
09/04/2010	0.21	09/04/2010	-1.37
10/04/2010	0.346	10/04/2010	-1.26
11/04/2010	0.48	11/04/2010	-1.42

12/04/2010	0.208	12/04/2010	-1.38
13/04/2010	-0.067	13/04/2010	-1.37
14/04/2010	-0.213	14/04/2010	-1.70
15/04/2010	-0.366	15/04/2010	-1.42
16/04/2010	-0.553	16/04/2010	-1.02
17/04/2010	-0.806	17/04/2010	-0.94
18/04/2010	-0.678	18/04/2010	-0.38
19/04/2010	-0.797	19/04/2010	0.33
20/04/2010	-1.157	20/04/2010	-0.35
21/04/2010	-1.644	21/04/2010	-0.57
22/04/2010	-1.864	22/04/2010	-0.20
23/04/2010	-1.935	23/04/2010	0.09
24/04/2010	-1.785	24/04/2010	-0.29
25/04/2010	-1.478	25/04/2010	-0.57
26/04/2010	-1.223	26/04/2010	-0.25
27/04/2010	-0.874	27/04/2010	-0.52
28/04/2010	-0.573	28/04/2010	-0.86
29/04/2010	-0.775	29/04/2010	-0.68
30/04/2010	-0.966	30/04/2010	-0.65
01/05/2010	-0.963	01/05/2010	-0.22
02/05/2010	-0.659	02/05/2010	0.37
03/05/2010	-0.056	03/05/2010	0.15
04/05/2010	-0.166	04/05/2010	0.47
05/05/2010	-0.58	05/05/2010	1.19
06/05/2010	-0.689	06/05/2010	0.21
07/05/2010	-0.908	07/05/2010	-0.08
08/05/2010	-1.088	08/05/2010	-0.30
09/05/2010	-1.134	09/05/2010	-0.67
10/05/2010	-0.818	10/05/2010	-0.23
11/05/2010	-0.258	11/05/2010	0.00
12/05/2010	0.013	12/05/2010	0.72
13/05/2010	-0.343	13/05/2010	1.01
14/05/2010	-0.663	14/05/2010	1.56
15/05/2010	-0.747	15/05/2010	2.72
16/05/2010	-0.831	16/05/2010	1.38
17/05/2010	-0.722	17/05/2010	0.15
18/05/2010	-0.269	18/05/2010	-0.05
19/05/2010	0.072	19/05/2010	-0.28
20/05/2010	0.172	20/05/2010	-1.09
21/05/2010	-0.042	21/05/2010	-1.54
22/05/2010	-0.48	22/05/2010	-1.13
23/05/2010	-0.782	23/05/2010	-0.77
24/05/2010	-0.737	24/05/2010	-0.39
25/05/2010	-0.734	25/05/2010	0.04
26/05/2010	-1.306	26/05/2010	-0.12
27/05/2010	-1.556	27/05/2010	0.20
28/05/2010	-1.178	28/05/2010	0.56
29/05/2010	-0.642	29/05/2010	0.90
30/05/2010	-0.383	30/05/2010	1.31
31/05/2010	-0.326	31/05/2010	1.48
01/06/2010	-0.309	01/06/2010	0.41
, -, -=-			

02/06/2010	-0.33	02/06/2010	0.24
03/06/2010	-0.485	03/06/2010	0.01
04/06/2010	-0.642	04/06/2010	-0.10
05/06/2010	-0.649	05/06/2010	-0.55
06/06/2010	-0.695	06/06/2010	-0.09
07/06/2010	-0.687	07/06/2010	0.04
08/06/2010	-0.635	08/06/2010	-0.33
09/06/2010	-0.272	09/06/2010	-0.09
10/06/2010	-0.06	10/06/2010	-0.50
11/06/2010	-0.102	11/06/2010	0.49
12/06/2010	-0.113	12/06/2010	0.52
13/06/2010	-0.289	13/06/2010	0.30
14/06/2010	-0.375	14/06/2010	0.08
15/06/2010	-0.346	15/06/2010	-0.40
16/06/2010	-0.447	16/06/2010	0.00
17/06/2010	-0.554	17/06/2010	-0.46
18/06/2010	-0.618	18/06/2010	0.53
19/06/2010	-0.251	19/06/2010	1.87
20/06/2010	0.224	20/06/2010	1.63
21/06/2010	0.218	21/06/2010	0.63
22/06/2010	0.097	22/06/2010	-0.03
23/06/2010	-0.042	23/06/2010	-0.74
24/06/2010	-0.394	24/06/2010	-0.92
25/06/2010	-0.841	25/06/2010	-0.52
26/06/2010	-1.104	26/06/2010	-0.49
27/06/2010	-1.11	27/06/2010	-0.55
28/06/2010	-1.197	28/06/2010	-0.28
29/06/2010	-1.142	29/06/2010	-0.21
30/06/2010	-1.04	30/06/2010	-0.46
01/07/2010	-0.875	01/07/2010	-0.75
02/07/2010	-0.49	02/07/2010	-1.23
03/07/2010	-0.008	03/07/2010	-1.15
04/07/2010	0.062	04/07/2010	-0.99
05/07/2010	-0.227	05/07/2010	-0.53
06/07/2010	-0.028	06/07/2010	-0.42
07/07/2010	0.096	07/07/2010	-0.94
08/07/2010	0.353	08/07/2010	-1.15
09/07/2010	0.557	09/07/2010	-0.67
10/07/2010	0.732	10/07/2010	-0.62
11/07/2010	0.648	11/07/2010	-0.63
12/07/2010	0.078	12/07/2010	-0.30
13/07/2010	-0.245	13/07/2010	-0.24
14/07/2010	-0.267	14/07/2010	-0.23
15/07/2010	-0.46	15/07/2010	-0.09
16/07/2010	-0.456	16/07/2010	-0.16
17/07/2010	-0.429	17/07/2010	-0.14
18/07/2010	-0.427	18/07/2010	-0.26
19/07/2010	-0.544	19/07/2010	-0.33
20/07/2010	-0.553	20/07/2010	-0.45
21/07/2010	-0.34	21/07/2010	-0.56
22/07/2010	-0.175	22/07/2010	-0.61

22/07/2010	0.24	00/07/0040	0.44
23/07/2010	-0.31	23/07/2010	0.11
24/07/2010	-0.558	24/07/2010	0.10
25/07/2010	-0.446	25/07/2010	-0.08
26/07/2010	-0.348	26/07/2010	-0.64
27/07/2010	-0.49	27/07/2010	-0.72
28/07/2010	-0.235	28/07/2010	-0.58
29/07/2010	-0.037	29/07/2010	0.28
30/07/2010	-0.084	30/07/2010	-0.05
31/07/2010	0.105	31/07/2010	-0.75
01/08/2010	0.369	01/08/2010	-1.02
02/08/2010	0.669	02/08/2010	-0.66
03/08/2010	0.788	03/08/2010	0.04
04/08/2010	0.828	04/08/2010	0.03
05/08/2010	0.627	05/08/2010	0.25
06/08/2010	0.253	06/08/2010	-0.68
07/08/2010	-0.203	07/08/2010	-1.02
08/08/2010	-0.213	08/08/2010	-0.66
09/08/2010	0.035	09/08/2010	-0.70
10/08/2010	-0.111	10/08/2010	-0.30
11/08/2010	-0.375	11/08/2010	0.05
12/08/2010	-0.559	12/08/2010	-0.25
13/08/2010	-0.628	13/08/2010	-0.81
14/08/2010	-0.404	14/08/2010	-0.67
15/08/2010	-0.14	15/08/2010	-0.32
16/08/2010	-0.295	16/08/2010	0.26
17/08/2010	-0.9	17/08/2010	0.15
18/08/2010	-1.56	18/08/2010	0.01
19/08/2010	-1.998	19/08/2010	-0.84
20/08/2010	-2.005	20/08/2010	-0.75
21/08/2010	-1.703	21/08/2010	-0.65
22/08/2010	-1 475	22/08/2010	-0.46
22/08/2010	-1 241	23/08/2010	0.40
24/08/2010	-1.062	24/08/2010	0.01
25/08/2010	-1.08	25/08/2010	-0.09
26/08/2010	-1 1/19	26/08/2010	-0.38
20/08/2010	-1 718	27/08/2010	0.50
28/08/2010	-1.210	28/08/2010	0.22
20/08/2010	-1.331	20/08/2010	-0.35
29/08/2010	-1.377	29/08/2010	-0.35
21/08/2010	-1.242	30/08/2010	-0.10
01/00/2010	-1.008	31/08/2010	-1.20
01/09/2010	-0.901	01/09/2010	-1.43
02/09/2010	-0.789	02/09/2010	-0.89
03/09/2010	-0.917	03/09/2010	-0.50
04/09/2010	-1.227	04/09/2010	-0.50
05/09/2010	-1.32	05/09/2010	-0.82
06/09/2010	-1.135	06/09/2010	-0.50
07/09/2010	-1.012	07/09/2010	0.01
08/09/2010	-0./91	08/09/2010	1.04
09/09/2010	-0.345	09/09/2010	0.49
10/09/2010	-0.113	10/09/2010	-0.49
11/09/2010	-0.007	11/09/2010	-1.22

12/09/2010	0.242	12/09/2010	-0.68
13/09/2010	0.332	13/09/2010	-0.04
14/09/2010	-0.404	14/09/2010	-0.07
15/09/2010	-1.071	15/09/2010	-0.15
16/09/2010	-1.235	16/09/2010	0.00
17/09/2010	-0.861	17/09/2010	-0.26
18/09/2010	-0.524	18/09/2010	0.29
19/09/2010	-0.322	19/09/2010	-0.11
20/09/2010	-0.037	20/09/2010	-0.83
21/09/2010	0.138	21/09/2010	-0.56
22/09/2010	0.216	22/09/2010	-0.46
23/09/2010	0.018	23/09/2010	-0.31
24/09/2010	-0.242	24/09/2010	0.67
25/09/2010	-0.172	25/09/2010	1.51
26/09/2010	0.131	26/09/2010	0.87
27/09/2010	0.282	27/09/2010	0.76
28/09/2010	0.11	28/09/2010	0.45
29/09/2010	0.332	29/09/2010	0.09
30/09/2010	0.295	30/09/2010	-0.07
01/10/2010	0.353	01/10/2010	-0.16
02/10/2010	0.388	02/10/2010	-0.88
03/10/2010	0.765	03/10/2010	-0.58
04/10/2010	1.157	04/10/2010	0.05
05/10/2010	1.072	05/10/2010	0.10
06/10/2010	1.095	06/10/2010	-1.26
07/10/2010	0.391	07/10/2010	-1.24
08/10/2010	-0.299	08/10/2010	-1.35
09/10/2010	-1.01	09/10/2010	-1.55
10/10/2010	-1.549	10/10/2010	-1.07
11/10/2010	-1.154	11/10/2010	-2.39
12/10/2010	-0.936	12/10/2010	-1.46
13/10/2010	-0.892	13/10/2010	-0.26
14/10/2010	-0.923	14/10/2010	0.50
15/10/2010	-0.802	15/10/2010	0.36
16/10/2010	-0.33	16/10/2010	0.41
17/10/2010	-0.224	17/10/2010	0.87
18/10/2010	-0.739	18/10/2010	0.47
19/10/2010	-0.952	19/10/2010	0.49
20/10/2010	-1.022	20/10/2010	0.65
21/10/2010	-1.215	21/10/2010	-0.40
22/10/2010	-1.295	22/10/2010	-0.84
23/10/2010	-1.116	23/10/2010	-0.51
24/10/2010	-0.783	24/10/2010	0.44
25/10/2010	-0.393	25/10/2010	2.03
26/10/2010	-0.39	26/10/2010	0.56
27/10/2010	-0.468	27/10/2010	0.20
28/10/2010	-0.125	28/10/2010	-0.16
29/10/2010	0.06	29/10/2010	-0.51
30/10/2010	-0.257	30/10/2010	-0.16
31/10/2010	-0.302	31/10/2010	0.28
01/11/2010	-0.18	01/11/2010	1.33

02/11/2010	0.004	02/11/2010	1.15
03/11/2010	0.066	03/11/2010	0.50
04/11/2010	-0.302	04/11/2010	-0.36
05/11/2010	-0.513	05/11/2010	-0.50
06/11/2010	-0.203	06/11/2010	0.23
07/11/2010	0.097	07/11/2010	1.11
08/11/2010	-0.548	08/11/2010	2.63
09/11/2010	-0.912	09/11/2010	2.11
10/11/2010	-0.909	10/11/2010	1.99
11/11/2010	-0.895	11/11/2010	1.99
12/11/2010	-0.513	12/11/2010	1.77
13/11/2010	-0.11	13/11/2010	0.31
14/11/2010	0.104	14/11/2010	-0.48
15/11/2010	0.045	15/11/2010	1.27
16/11/2010	-0.037	16/11/2010	2.39
17/11/2010	-0.104	17/11/2010	1.33
18/11/2010	-0.321	18/11/2010	1.17
19/11/2010	-0.857	19/11/2010	0.03
20/11/2010	-1.055	20/11/2010	-0.22
21/11/2010	-1.015	21/11/2010	1.25
22/11/2010	-1.216	22/11/2010	1.96
23/11/2010	-1.506	23/11/2010	1.71
24/11/2010	-1.876	24/11/2010	0.77
25/11/2010	-2.522	25/11/2010	0.28
26/11/2010	-2.632	26/11/2010	0.02
27/11/2010	-2.527	27/11/2010	-2.57
28/11/2010	-2.317	28/11/2010	-0.06
29/11/2010	-2.504	29/11/2010	-1.31
30/11/2010	-2.696	30/11/2010	-2.17
01/12/2010	-2.043	01/12/2010	1.12
02/12/2010	-1.667	02/12/2010	1.29
03/12/2010	-1.744	03/12/2010	1.84
04/12/2010	-1.545	04/12/2010	0.10
05/12/2010	-1.211	05/12/2010	-1.13
06/12/2010	-1.082	06/12/2010	0.22
07/12/2010	-1.106	07/12/2010	-0.03
08/12/2010	-1.036	08/12/2010	0.28
09/12/2010	-0.801	09/12/2010	0.59
10/12/2010	-0.707	10/12/2010	-0.53
11/12/2010	-0.693	11/12/2010	-0.13
12/12/2010	-0.862	12/12/2010	0.45
13/12/2010	-1.416	13/12/2010	-0.25
14/12/2010	-1.544	14/12/2010	-0.19
15/12/2010	-1.279	15/12/2010	-0.15
16/12/2010	-1.119	16/12/2010	0.11
17/12/2010	-1.229	17/12/2010	0.64
18/12/2010	-1.533	18/12/2010	-0.90
19/12/2010	-1.304	19/12/2010	-1.51
20/12/2010	-0.74	20/12/2010	-0.01
21/12/2010	-0.543	21/12/2010	-1.61
22/12/2010	-0.832	22/12/2010	-2.30

23/12/2010	-1.187	23/12/2010	0.44
24/12/2010	-1.343	24/12/2010	3.56
25/12/2010	-1.144	25/12/2010	2.15
26/12/2010	-0.834	26/12/2010	0.24
27/12/2010	-0.868	27/12/2010	-0.51
28/12/2010	-0.968	28/12/2010	-0.67
29/12/2010	-1.137	29/12/2010	-1.12
30/12/2010	-1.462	30/12/2010	-1.37
31/12/2010	-1.355	31/12/2010	-0.50
01/01/2011	-1.626	01/01/2011	0.35
02/01/2011	-1.734	02/01/2011	0.89
03/01/2011	-1.814	03/01/2011	0.15
04/01/2011	-1.909	04/01/2011	-0.10
05/01/2011	-1.746	05/01/2011	-0.23
06/01/2011	-1.447	06/01/2011	-0.24
07/01/2011	-1.238	07/01/2011	-0.02
08/01/2011	-0.92	08/01/2011	0.20
09/01/2011	-0.524	09/01/2011	0.47
10/01/2011	-0.136	10/01/2011	1.35
11/01/2011	0.05	11/01/2011	2.33
12/01/2011	0.285	12/01/2011	1.56
13/01/2011	0.47	13/01/2011	0.78
14/01/2011	0.702	14/01/2011	0.52
15/01/2011	0.68	15/01/2011	0.59
16/01/2011	0.389	16/01/2011	0.09
17/01/2011	0.375	17/01/2011	0.40
18/01/2011	0.345	18/01/2011	-0.02
19/01/2011	0.193	19/01/2011	-0.29
20/01/2011	-0.048	20/01/2011	-0.26
21/01/2011	-0.424	21/01/2011	-0.77
22/01/2011	-0.777	22/01/2011	-1.51
23/01/2011	-0.797	23/01/2011	-2.10
24/01/2011	-0.944	24/01/2011	-2.16
25/01/2011	-0.872	25/01/2011	-1.23
26/01/2011	-0.619	26/01/2011	-2.06
27/01/2011	-0.358	27/01/2011	-2 57
28/01/2011	-0.071	28/01/2011	-1 02
29/01/2011	0.086	29/01/2011	-0.74
30/01/2011	0 328	30/01/2011	-0.35
31/01/2011	0.459	31/01/2011	0.01
01/02/2011	0.523	01/02/2011	0.01
02/02/2011	0.731	02/02/2011	1 02
03/02/2011	0.964	03/02/2011	1.02
04/02/2011	0.904	04/02/2011	1.05
05/02/2011	0.799	05/02/2011	1.13
06/02/2011	0.646	06/02/2011	0.5 <i>1</i>
07/02/2011	0.040 0 866	07/02/2011	0.34
08/02/2011	0.000	08/02/2011	0.57
09/02/2011	0.050 0.368	00/02/2011	0.54 0.12
10/02/2011	0.303	10/02/2011	0.10
11/02/2011	0.074	11/02/2011	0.00 0 00
	0.407		0.05

12/02/2011	0.50	40/00/0044	0.42
12/02/2011	0.58	12/02/2011	0.42
13/02/2011	0.642	13/02/2011	0.42
14/02/2011	0.797	14/02/2011	1.07
15/02/2011	0.596	15/02/2011	0.47
16/02/2011	0.297	16/02/2011	0.95
17/02/2011	0.088	17/02/2011	0.89
18/02/2011	-0.105	18/02/2011	1.74
19/02/2011	-0.119	19/02/2011	1.11
20/02/2011	-0.283	20/02/2011	1.64
21/02/2011	-0.211	21/02/2011	2.81
22/02/2011	-0.21	22/02/2011	2.40
23/02/2011	-0.031	23/02/2011	0.52
24/02/2011	0.404	24/02/2011	-0.09
25/02/2011	1.131	25/02/2011	0.20
26/02/2011	1.536	26/02/2011	0.61
27/02/2011	1.157	27/02/2011	1.13
28/02/2011	1.272	28/02/2011	0.83
01/03/2011	1.737	01/03/2011	0.13
02/03/2011	1.351	02/03/2011	-0.12
03/03/2011	0.992	03/03/2011	-0.94
04/03/2011	0.636	04/03/2011	-1.82
05/03/2011	0.599	05/03/2011	-1.23
06/03/2011	0.8	06/03/2011	-0.67
07/03/2011	0.872	07/03/2011	-2.02
08/03/2011	0.933	08/03/2011	-3.26
09/03/2011	1.067	09/03/2011	-2.03
10/03/2011	1.032	10/03/2011	-1.34
11/03/2011	0.875	11/03/2011	-2.05
12/03/2011	0.697	12/03/2011	-2.75
13/03/2011	0.863	13/03/2011	-1.78
14/03/2011	0.921	14/03/2011	-3.27
15/03/2011	0.912	15/03/2011	-1 59
16/03/2011	0.912	16/03/2011	0.91
17/03/2011	1 083	17/03/2011	2 46
18/03/2011	1 167	18/03/2011	1 58
10/03/2011	1.107	19/03/2011	0.77
20/03/2011	0.808	20/03/2011	-0.80
20/03/2011	0.050	21/03/2011	-1 52
22/02/2011	0.754	22/03/2011	-2.60
22/03/2011	-0.766	22/03/2011	-2.00
23/03/2011	-0.700	23/03/2011	-2.00
24/03/2011	-1.109	24/03/2011	-2.10
25/05/2011	-1.400	25/05/2011	-0.88
20/03/2011	-1.091	20/03/2011	0.09
27/03/2011	-1.018	27/03/2011	0.74
28/03/2011	-1.224	28/03/2011	1.46
29/03/2011	-0.741	29/03/2011	1.21
30/03/2011	-0.43	30/03/2011	1.19
31/03/2011	-0.229	31/03/2011	0.45
01/04/2011	-0.116	01/04/2011	-0.39
02/04/2011	-0.064	02/04/2011	-0.56
03/04/2011	0.162	03/04/2011	-0.32

04/04/2011	0.364	04/04/2011	0.09
05/04/2011	0.447	05/04/2011	-1.67
06/04/2011	0.633	06/04/2011	-1.99
07/04/2011	0.631	07/04/2011	-0.70
08/04/2011	0.168	08/04/2011	0.44
09/04/2011	0.283	09/04/2011	0.93
10/04/2011	0.948	10/04/2011	0.76
11/04/2011	1.65	11/04/2011	-0.14
12/04/2011	1.905	12/04/2011	0.32
13/04/2011	2.156	13/04/2011	-0.56
14/04/2011	2.112	14/04/2011	-1.08
15/04/2011	2.253	15/04/2011	-1.56
16/04/2011	2.057	16/04/2011	-1.81
17/04/2011	1.397	17/04/2011	-1.56
18/04/2011	0.988	18/04/2011	-1.41
19/04/2011	1.627	19/04/2011	-1.07
20/04/2011	2.082	20/04/2011	-1.89
21/04/2011	1.834	21/04/2011	-2.03
22/04/2011	1.447	22/04/2011	-1.07
23/04/2011	1.495	23/04/2011	-1.30
24/04/2011	1.953	24/04/2011	-1.37
25/04/2011	2.2	25/04/2011	-0.12
26/04/2011	1.749	26/04/2011	0.27
27/04/2011	1.347	27/04/2011	-0.58
28/04/2011	1.226	28/04/2011	-1.04
29/04/2011	1.139	29/04/2011	-1.60
30/04/2011	1.071	30/04/2011	-1.16
01/05/2011	0.924	01/05/2011	-1.60
02/05/2011	0.56	02/05/2011	-0.87
03/05/2011	0.179	03/05/2011	1.43
04/05/2011	0.221	04/05/2011	1.00
05/05/2011	0.189	05/05/2011	-0.93
06/05/2011	-0.238	06/05/2011	-2.05
07/05/2011	-0.493	07/05/2011	-1.06
08/05/2011	-0.574	08/05/2011	-0.12
09/05/2011	-0.777	09/05/2011	-1.37
10/05/2011	-0.487	10/05/2011	-1.33
11/05/2011	-0.094	11/05/2011	-0.85
12/05/2011	-0.114	12/05/2011	-0.69
13/05/2011	-0.125	13/05/2011	-0.68
14/05/2011	-0.139	14/05/2011	-0.30
15/05/2011	-0.162	15/05/2011	0.01
16/05/2011	0.046	16/05/2011	-0.43
17/05/2011	0.08	17/05/2011	-0.83
18/05/2011	-0.245	18/05/2011	-1.50
19/05/2011	-0.658	19/05/2011	-1.27
20/05/2011	-0.846	20/05/2011	-0.79
21/05/2011	-0.889	21/05/2011	-0.09
22/05/2011	-0.852	22/05/2011	-0.04
23/05/2011	-0.827	23/05/2011	-0.36
24/05/2011	-0.68	24/05/2011	-0.25

25/05/2011	-0.413	25/05/2011	-0.15
26/05/2011	0.344	26/05/2011	0.22
27/05/2011	0.956	27/05/2011	0.61
28/05/2011	1.033	28/05/2011	-0.14
29/05/2011	1.063	29/05/2011	-0.65
30/05/2011	1.077	30/05/2011	-0.28
31/05/2011	1.018	31/05/2011	0.36
01/06/2011	1 357	01/06/2011	0.06
02/06/2011	1 585	02/06/2011	-0.82
03/06/2011	1 224	03/06/2011	-1 23
04/06/2011	0.652	04/06/2011	-1 2/
05/06/2011	0.052	05/06/2011	_1.24
05/06/2011	-0.073	06/06/2011	-1.20
07/06/2011	-0.073	07/06/2011	-0.40
07/00/2011	-0.434	08/06/2011	1 21
00/06/2011	-0.007	00/06/2011	1.51
10/06/2011	-0.820	10/06/2011	0.64
10/06/2011	-1.065	10/00/2011	0.72
11/06/2011	-1.1//	17/06/2011	0.38
12/06/2011	-1.302	12/06/2011	-0.04
13/06/2011	-1.262	13/06/2011	0.10
14/06/2011	-1.248	14/06/2011	0.14
15/06/2011	-1.35	15/06/2011	-0.03
16/06/2011	-1.459	16/06/2011	-0.10
1//06/2011	-1.553	17/06/2011	-0.44
18/06/2011	-1./11	18/06/2011	0.59
19/06/2011	-1.807	19/06/2011	0.56
20/06/2011	-1.705	20/06/2011	-0.10
21/06/2011	-1.449	21/06/2011	-0.69
22/06/2011	-1.169	22/06/2011	-0.61
23/06/2011	-0.868	23/06/2011	-0.25
24/06/2011	-0.642	24/06/2011	-0.26
25/06/2011	-0.631	25/06/2011	-0.87
26/06/2011	-0.747	26/06/2011	-0.94
27/06/2011	-0.847	27/06/2011	-0.81
28/06/2011	-0.882	28/06/2011	-0.25
29/06/2011	-0.967	29/06/2011	-0.16
30/06/2011	-1.126	30/06/2011	-0.20
01/07/2011	-1.305	01/07/2011	-0.04
02/07/2011	-1.231	02/07/2011	-0.31
03/07/2011	-1.197	03/07/2011	-0.20
04/07/2011	-0.99	04/07/2011	0.43
05/07/2011	-0.777	05/07/2011	0.25
06/07/2011	-1.008	06/07/2011	0.01
07/07/2011	-1.146	07/07/2011	-0.21
08/07/2011	-1.165	08/07/2011	-0.21
09/07/2011	-1.043	09/07/2011	-0.68
10/07/2011	-0.918	10/07/2011	-0.65
11/07/2011	-0.655	11/07/2011	-0.90
12/07/2011	-0.207	12/07/2011	-0.56
13/07/2011	-0.123	13/07/2011	0.35
14/07/2011	-0.231	14/07/2011	0.34

15/07/2011	-0.606	15/07/2011	-0.23
16/07/2011	-0.841	16/07/2011	-0.30
17/07/2011	-0.63	17/07/2011	0.24
18/07/2011	-0.548	18/07/2011	0.76
19/07/2011	-0.661	19/07/2011	0.84
20/07/2011	-0.874	20/07/2011	0.22
21/07/2011	-0.797	21/07/2011	-0.50
22/07/2011	-0.479	22/07/2011	-0.33
23/07/2011	-0.411	23/07/2011	0.74
24/07/2011	-0.427	24/07/2011	1.00
25/07/2011	-0.507	25/07/2011	0.21
26/07/2011	-0.71	26/07/2011	-0.66
27/07/2011	-0.699	27/07/2011	-1.45
28/07/2011	-0.365	28/07/2011	-0.41
29/07/2011	-0.459	29/07/2011	-0.02
30/07/2011	-0.714	30/07/2011	0.23
31/07/2011	-1.279	31/07/2011	-0.01
01/08/2011	-1.66	01/08/2011	-1.27
02/08/2011	-2.027	02/08/2011	-0.56
03/08/2011	-2.002	03/08/2011	-0.12
04/08/2011	-1.838	04/08/2011	0.12
05/08/2011	-1.696	05/08/2011	-0.05
06/08/2011	-1.873	06/08/2011	-0.19
07/08/2011	-2.157	07/08/2011	-0.32
08/08/2011	-2.206	08/08/2011	0.07
09/08/2011	-1.822	09/08/2011	-0.48
10/08/2011	-1.429	10/08/2011	-1.04
11/08/2011	-0.921	11/08/2011	-1.09
12/08/2011	-0.226	12/08/2011	-0.47
13/08/2011	0.328	13/08/2011	-0.29
14/08/2011	0.459	14/08/2011	-0.45
15/08/2011	0.338	15/08/2011	-0.21
16/08/2011	0.104	16/08/2011	-0.64
17/08/2011	-0.053	17/08/2011	-0.98
18/08/2011	0.15	18/08/2011	-1.44
19/08/2011	-0.034	19/08/2011	-1.36
20/08/2011	-0.296	20/08/2011	-1.12
21/08/2011	-0.555	21/08/2011	-0.85
22/08/2011	-0.981	22/08/2011	-0.40
23/08/2011	-1.223	23/08/2011	-0.42
24/08/2011	-1.004	24/08/2011	-0.17
25/08/2011	-0.415	25/08/2011	-0.20
26/08/2011	0.163	26/08/2011	0.20
27/08/2011	0.354	27/08/2011	0.40
28/08/2011	0.15	28/08/2011	-0.41
29/08/2011	-0.021	29/08/2011	-0.01
30/08/2011	-0.224	30/08/2011	0.23
31/08/2011	-0.096	31/08/2011	-0.34
01/09/2011	-0.071	01/09/2011	-0.78
02/09/2011	0.058	02/09/2011	-0.10
03/09/2011	0.081	03/09/2011	0.19

04/09/2011	0.344	04/09/2011	0.44
05/09/2011	0.346	05/09/2011	0.37
06/09/2011	0.134	06/09/2011	-0.10
07/09/2011	0.148	07/09/2011	0.34
08/09/2011	0.363	08/09/2011	0.22
09/09/2011	0.399	09/09/2011	-0.45
10/09/2011	0.177	10/09/2011	-0.42
11/09/2011	0.263	11/09/2011	0.05
12/09/2011	0.138	12/09/2011	-0.22
13/09/2011	0.154	13/09/2011	-0.85
14/09/2011	0.306	14/09/2011	-1.02
15/09/2011	0.658	15/09/2011	-0.86
16/09/2011	0.674	16/09/2011	-0.44
17/09/2011	0.572	17/09/2011	0.09
18/09/2011	0.827	18/09/2011	0.74
19/09/2011	0.629	19/09/2011	1.03
20/09/2011	0.135	20/09/2011	-0.65
21/09/2011	-0.357	21/09/2011	-0.35
22/09/2011	-0.49	22/09/2011	0.16
23/09/2011	-0.223	23/09/2011	0.03
24/09/2011	0.281	24/09/2011	-0.23
25/09/2011	0.525	25/09/2011	-0.83
26/09/2011	0.184	26/09/2011	-0.77
27/09/2011	-0.009	27/09/2011	-0.86
28/09/2011	0.383	28/09/2011	-1.22
29/09/2011	0.594	29/09/2011	-1.48
30/09/2011	0.236	30/09/2011	-1.49
01/10/2011	0.842	01/10/2011	-1.53
02/10/2011	1.094	02/10/2011	-0.75
03/10/2011	0.862	03/10/2011	-0.06
04/10/2011	0.627	04/10/2011	-0.03
05/10/2011	-0.044	05/10/2011	-0.22
06/10/2011	-0.493	06/10/2011	0.34
07/10/2011	-0.179	07/10/2011	1.17
08/10/2011	0.485	08/10/2011	0.27
09/10/2011	0.71	09/10/2011	0.21
10/10/2011	0.203	10/10/2011	-0.05
11/10/2011	-0.432	11/10/2011	0.41
12/10/2011	-0.476	12/10/2011	0.29
13/10/2011	-0.084	13/10/2011	-0.13
14/10/2011	0.264	14/10/2011	-1.13
15/10/2011	0.064	15/10/2011	-1.42
16/10/2011	-0.14	16/10/2011	-0.98
17/10/2011	-0.199	17/10/2011	-1.02
18/10/2011	-0.284	18/10/2011	-0.87
19/10/2011	0.114	19/10/2011	-0.06
20/10/2011	0.62	20/10/2011	-0.05
21/10/2011	0.854	21/10/2011	-1.54
22/10/2011	0.853	22/10/2011	-1.55
23/10/2011	0.661	23/10/2011	-1.24
24/10/2011	0.701	24/10/2011	-1.86

25/10/2011	0.48	25/10/2011	-0.31
26/10/2011	0.07	26/10/2011	-0.27
27/10/2011	0.149	27/10/2011	-1.39
28/10/2011	0.322	28/10/2011	-1.17
29/10/2011	0.199	29/10/2011	-0.88
30/10/2011	0.041	30/10/2011	-0.58
31/10/2011	0.054	31/10/2011	-0.70
01/11/2011	-0.185	01/11/2011	-0.63
02/11/2011	-0.326	02/11/2011	-1.27
03/11/2011	-0.136	03/11/2011	-1.85
04/11/2011	0.179	04/11/2011	-2.10
05/11/2011	0.604	05/11/2011	-0.01
06/11/2011	1.081	06/11/2011	1.27
07/11/2011	1.108	07/11/2011	0.35
08/11/2011	0.787	08/11/2011	0.00
09/11/2011	0.543	09/11/2011	-0.33
10/11/2011	0.243	10/11/2011	-0.25
11/11/2011	0.02	11/11/2011	-0.90
12/11/2011	0.045	12/11/2011	-2.00
13/11/2011	0.171	13/11/2011	-2.27
14/11/2011	-0.058	14/11/2011	-1.91
15/11/2011	-0.03	15/11/2011	-0.37
16/11/2011	-0.022	16/11/2011	-0.33
17/11/2011	-0.026	17/11/2011	-0.85
18/11/2011	0.252	18/11/2011	-1.41
19/11/2011	0.735	19/11/2011	-2.14
20/11/2011	1.233	20/11/2011	-2.91
21/11/2011	1.308	21/11/2011	-1.48
22/11/2011	1.356	22/11/2011	-0.18
23/11/2011	1.367	23/11/2011	-0.27
24/11/2011	1.51	24/11/2011	-0.93
25/11/2011	1.741	25/11/2011	-0.55
26/11/2011	1.639	26/11/2011	-0.10
27/11/2011	1.609	27/11/2011	-0.44
28/11/2011	1.561	28/11/2011	-0.25
29/11/2011	1.639	29/11/2011	0.07
30/11/2011	1.95	30/11/2011	0.03
01/12/2011	1.313	01/12/2011	0.17
02/12/2011	1.618	02/12/2011	0.57
03/12/2011	2.002	03/12/2011	0.88
04/12/2011	1.922	04/12/2011	1.64
05/12/2011	1.907	05/12/2011	2.50
06/12/2011	1.995	06/12/2011	2.10
07/12/2011	1.655	07/12/2011	2.12
08/12/2011	1.175	08/12/2011	1.24
09/12/2011	0.982	09/12/2011	0.61
10/12/2011	1.302	10/12/2011	0.81
11/12/2011	1.611	11/12/2011	0.74
12/12/2011	1.718	12/12/2011	2.11
13/12/2011	1.704	13/12/2011	1.71
14/12/2011	1.397	14/12/2011	1.81

15/12/2011	1.222	15/12/2011	2.64
16/12/2011	1.183	16/12/2011	4.02
17/12/2011	0.757	17/12/2011	3.86
18/12/2011	0.451	18/12/2011	1.93
19/12/2011	0.515	19/12/2011	1.32
20/12/2011	0 543	20/12/2011	2.09
21/12/2011	0.533	21/12/2011	1 94
22/12/2011	0.555	22/12/2011	1 21
22/12/2011	1 / 39	23/12/2011	0.67
23/12/2011	1.435	24/12/2011	1 22
24/12/2011	1.840	25/12/2011	_0.41
25/12/2011	1,784	26/12/2011	-0.41
20/12/2011	1.599	20/12/2011	-0.70
27/12/2011	1.004	21/12/2011	-0.45
20/12/2011	0.900	20/12/2011	0.59
29/12/2011	0.807	29/12/2011	1.70
30/12/2011	0.98	30/12/2011	2.79
31/12/2011	1.419	31/12/2011	2.27
01/01/2012	1.358	01/01/2012	1.44
02/01/2012	1.365	02/01/2012	2.33
03/01/2012	1.526	03/01/2012	1.85
04/01/2012	1.657	04/01/2012	1.82
05/01/2012	1.029	05/01/2012	3.15
06/01/2012	0.597	06/01/2012	2.89
07/01/2012	0.467	07/01/2012	0.86
08/01/2012	0.507	08/01/2012	0.93
09/01/2012	0.732	09/01/2012	0.11
10/01/2012	0.517	10/01/2012	-0.20
11/01/2012	0.111	11/01/2012	-0.41
12/01/2012	-0.244	12/01/2012	0.09
13/01/2012	-0.223	13/01/2012	0.93
14/01/2012	0.155	14/01/2012	0.77
15/01/2012	0.586	15/01/2012	0.29
16/01/2012	0.714	16/01/2012	-1.31
17/01/2012	1.07	17/01/2012	-1.10
18/01/2012	1.427	18/01/2012	0.58
19/01/2012	1.362	19/01/2012	1.50
20/01/2012	1.137	20/01/2012	2.65
21/01/2012	0.917	21/01/2012	1.82
22/01/2012	0.686	22/01/2012	1.68
23/01/2012	0.562	23/01/2012	1.05
24/01/2012	0.443	24/01/2012	1.01
25/01/2012	0.478	25/01/2012	0.04
26/01/2012	0.37	26/01/2012	-0.23
27/01/2012	0.233	27/01/2012	-0.78
28/01/2012	0.159	28/01/2012	-0.21
29/01/2012	0.296	29/01/2012	0.53
30/01/2012	0.306	30/01/2012	0.14
31/01/2012	0.265	31/01/2012	0.60
01/02/2012	0.129	01/02/2012	0.45
02/02/2012	0.01	02/02/2012	-0.53
03/02/2012	0.081	03/02/2012	0.46
<i></i>	0.001		0.10

04/02/2012	0.084	04/02/2012	1.37
05/02/2012	0.135	05/02/2012	1.89
06/02/2012	0.585	06/02/2012	1.78
07/02/2012	0.88	07/02/2012	1.51
08/02/2012	1.023	08/02/2012	-0.57
09/02/2012	0.843	09/02/2012	0.18
10/02/2012	0.542	10/02/2012	0.31
11/02/2012	0.321	11/02/2012	0.10
12/02/2012	0.043	12/02/2012	-0.33
13/02/2012	-0.22	13/02/2012	0.35
14/02/2012	-0.164	14/02/2012	1.18
15/02/2012	0.23	15/02/2012	1.44
16/02/2012	0.451	16/02/2012	0.93
17/02/2012	0.477	17/02/2012	-0.29
18/02/2012	0.397	18/02/2012	-0.11
19/02/2012	0.368	19/02/2012	0.55
20/02/2012	0.401	20/02/2012	0.02
21/02/2012	0.537	21/02/2012	-0.30
22/02/2012	0.689	22/02/2012	0.16
23/02/2012	0.674	23/02/2012	0.43
24/02/2012	0.635	24/02/2012	0.33
25/02/2012	0.543	25/02/2012	1.12
26/02/2012	0.568	26/02/2012	1.45
27/02/2012	0.832	27/02/2012	0.14
28/02/2012	0.903	28/02/2012	-0.38
29/02/2012	0.998	29/02/2012	0.28
01/03/2012	0.964	01/03/2012	0.16
02/03/2012	0.677	02/03/2012	0.88
03/03/2012	0.792	03/03/2012	1.77
04/03/2012	1.119	04/03/2012	1.82
05/03/2012	1.329	05/03/2012	1.92
06/03/2012	1.309	06/03/2012	0.94
07/03/2012	1.222	07/03/2012	0.12
08/03/2012	1.246	08/03/2012	1.12
09/03/2012	1.406	09/03/2012	-0.53
10/03/2012	1.222	10/03/2012	-0.06
11/03/2012	0.968	11/03/2012	0.21
12/03/2012	0.782	12/03/2012	0.32
13/03/2012	0.816	13/03/2012	-0.27
14/03/2012	0.946	14/03/2012	-0.35
15/03/2012	1.241	15/03/2012	-0.15
16/03/2012	1.309	16/03/2012	-0.05
17/03/2012	1.113	17/03/2012	0.17
18/03/2012	0.866	18/03/2012	0.67
19/03/2012	0.65	19/03/2012	0.23
20/03/2012	0.55	20/03/2012	-1.44
21/03/2012	0.588	21/03/2012	-1.48
22/03/2012	0.627	22/03/2012	-1.18
23/03/2012	0.167	23/03/2012	-1.54
24/03/2012	-0.315	24/03/2012	-1.00
25/03/2012	-0.062	25/03/2012	-0.95

26/03/2012	0.361	26/03/2012	-1.53
27/03/2012	0.535	27/03/2012	-1.52
28/03/2012	0.507	28/03/2012	-1.66
29/03/2012	0.181	29/03/2012	-0.57
30/03/2012	-0.066	30/03/2012	0.16
31/03/2012	-0.147	31/03/2012	-0.06
01/04/2012	-0.283	01/04/2012	-0.05
02/04/2012	-0.504	02/04/2012	-0.80
03/04/2012	-0.493	03/04/2012	-0.60
04/04/2012	-0.841	04/04/2012	-0.33
05/04/2012	-1.106	05/04/2012	-0.10
06/04/2012	-0.995	06/04/2012	0.56
07/04/2012	-0.261	07/04/2012	1.61
08/04/2012	0.278	08/04/2012	1.51
09/04/2012	0.207	09/04/2012	-0.61
10/04/2012	0.237	10/04/2012	0.06
11/04/2012	0.467	11/04/2012	1.45
12/04/2012	0.566	12/04/2012	-0.03
13/04/2012	0.268	13/04/2012	1.45
14/04/2012	0.058	14/04/2012	2.74
15/04/2012	0.259	15/04/2012	2.19
16/04/2012	0.588	16/04/2012	1.82
17/04/2012	0.787	17/04/2012	1.94
18/04/2012	0.782	18/04/2012	2.31
19/04/2012	0.686	19/04/2012	2.14
20/04/2012	0.581	20/04/2012	2.17
21/04/2012	0.461	21/04/2012	1.15
22/04/2012	0.451	22/04/2012	1.27
23/04/2012	0.349	23/04/2012	1.35
24/04/2012	0.087	24/04/2012	1.77
25/04/2012	-0.102	25/04/2012	-0.13
26/04/2012	0.343	26/04/2012	-1.31
27/04/2012	0.931	27/04/2012	-1.68
28/04/2012	0.75	28/04/2012	-1.36
29/04/2012	0.367	29/04/2012	-0.26
30/04/2012	0.502	30/04/2012	0.27
01/05/2012	0.438	01/05/2012	-0.07
02/05/2012	-0.078	02/05/2012	-0.35
03/05/2012	-0.556	03/05/2012	0.42
04/05/2012	-0.745	04/05/2012	0.63
05/05/2012	-0.831	05/05/2012	0.30
06/05/2012	-0.893	06/05/2012	0.85
07/05/2012	-0.869	07/05/2012	0.73
08/05/2012	-0.517	08/05/2012	-0.20
09/05/2012	-0.113	09/05/2012	-0.88
10/05/2012	-0.137	10/05/2012	-1.09
11/05/2012	-0.332	11/05/2012	-0.68
12/05/2012	-0.288	12/05/2012	0.16
13/05/2012	-0.388	13/05/2012	-0.05
14/05/2012	-0.427	14/05/2012	-0.57
15/05/2012	-0.154	15/05/2012	0.31

16/05/2012	-0.058	16/05/2012	-0.25
17/05/2012	-0.127	17/05/2012	-1.31
18/05/2012	-0.091	18/05/2012	-1.18
19/05/2012	0.009	19/05/2012	-0.64
20/05/2012	-0.076	20/05/2012	0.31
21/05/2012	-0.224	21/05/2012	2.57
22/05/2012	-0.067	22/05/2012	1.77
23/05/2012	0.378	23/05/2012	0.45
24/05/2012	0.621	24/05/2012	-0.49
25/05/2012	0.414	25/05/2012	-0.69
26/05/2012	0.16	26/05/2012	-0.29
27/05/2012	-0.548	27/05/2012	-0.39
28/05/2012	-1.379	28/05/2012	-0.53
29/05/2012	-1.703	29/05/2012	-0.26
30/05/2012	-1.707	30/05/2012	-0.86
31/05/2012	-1.59	31/05/2012	-1.26
01/06/2012	-1.714	01/06/2012	-0.64
02/06/2012	-1.969	02/06/2012	-0.01
03/06/2012	-2.144	03/06/2012	0.30
04/06/2012	-2.2	04/06/2012	0.79
05/06/2012	-2.025	05/06/2012	0.34
06/06/2012	-1.82	06/06/2012	-0.27
07/06/2012	-1.357	07/06/2012	-0.72
08/06/2012	-1.165	08/06/2012	0.29
09/06/2012	-1.254	09/06/2012	1.02
10/06/2012	-1.313	10/06/2012	1.13
11/06/2012	-1.192	11/06/2012	1.26
12/06/2012	-0.744	12/06/2012	1.36
13/06/2012	-0.737	13/06/2012	-0.51
14/06/2012	-1.085	14/06/2012	-0.77
15/06/2012	-1.08	15/06/2012	-0.53
16/06/2012	-0.855	16/06/2012	-0.35
17/06/2012	-0.752	17/06/2012	-0.62
18/06/2012	-0.859	18/06/2012	-0.94
19/06/2012	-0.82	19/06/2012	-0.87
20/06/2012	-0.663	20/06/2012	-0.08
21/06/2012	-0.54	21/06/2012	0.79
22/06/2012	-0.581	22/06/2012	0.12
23/06/2012	-0.803	23/06/2012	-0.25
24/06/2012	-0.987	24/06/2012	-0.26
25/06/2012	-1.285	25/06/2012	0.25
26/06/2012	-1.588	26/06/2012	-0.18
27/06/2012	-1.763	27/06/2012	-0.35
28/06/2012	-1.531	28/06/2012	-0.56
29/06/2012	-1.053	29/06/2012	-0.44
30/06/2012	-0.547	30/06/2012	0.09
01/07/2012	-0.41		
02/07/2012	-0.514		
03/07/2012	-0.696		
04/07/2012	-0.731		
05/07/2012	-0.616		

06/07/2012	-0.557
07/07/2012	-0.622
08/07/2012	-0.92
09/07/2012	-0 997
10/07/2012	-0.886
10/07/2012	0.000
11/07/2012	-0.803
12/0//2012	-1.016
13/07/2012	-1.154
14/07/2012	-1.346
15/07/2012	-1.729
16/07/2012	-1.751
17/07/2012	-1.597
18/07/2012	-1.467
19/07/2012	-1.124
20/07/2012	-0.697
21/07/2012	-0.317
22/07/2012	-0.023
22/07/2012	0.023
23/07/2012	0.004
24/07/2012	0.506
25/07/2012	-0.115
26/07/2012	-0.27
27/07/2012	-0.341
28/07/2012	0.026
29/07/2012	0.013
30/07/2012	-0.41
31/07/2012	-0.849
01/08/2012	-1.114
02/08/2012	-1.175
03/08/2012	-1.207
04/08/2012	-1.019
05/08/2012	-0.479
06/08/2012	-0.455
07/08/2012	-0 442
08/08/2012	-0.304
00/00/2012	0.304
09/08/2012	-0.201
10/08/2012	0.032
11/08/2012	0.204
12/08/2012	0.126
13/08/2012	-0.216
14/08/2012	-0.503
15/08/2012	-0.692
16/08/2012	-1.044
17/08/2012	-1.283
18/08/2012	-1.432
19/08/2012	-1.558
20/08/2012	-1.244
21/08/2012	-0.68
22/08/2012	-0.272
23/08/2012	-0 279
24/08/2012	_0 /12
2-7/00/2012	0.412
23/00/2012	-0.459

26/08/2012	-0.393
27/08/2012	-0.258
28/08/2012	0.038
29/08/2012	-0.045
30/08/2012	0.015
31/08/2012	0.467
01/09/2012	0.8
02/09/2012	0.709
03/09/2012	0.697
04/09/2012	0.621
05/09/2012	0.406
06/09/2012	0.133
07/09/2012	-0.155
08/09/2012	-0.276
09/09/2012	-0.276
10/09/2012	-0.199
11/09/2012	0.133
12/09/2012	0.27
13/09/2012	0.582
14/09/2012	0.578
15/09/2012	0.258
16/09/2012	-0.16
17/09/2012	-0.858
18/09/2012	-1.169
19/09/2012	-1.135
20/09/2012	-0.612
21/09/2012	-0.506
22/09/2012	-0.988
23/09/2012	-1.313
24/09/2012	-1.875
25/09/2012	-1.618
26/09/2012	-0.799
27/09/2012	-0.222
28/09/2012	-0.439
29/09/2012	-0.208
30/09/2012	-0.272

Calculating	s effective precipitation			d18O rainfall data
t	effective precipitation		t	d18O rainfall (weighted)
1	8.5		1	-89.48231161
2	1.1		2	-12.47178174
3	12.1		3	-105.0740237
4	1.7		4	-14.61263039
5	3.1		5	-27.06207236
6	11		6	-118.171168
7	3.8		7	-20.98892407
8	5.5		8	-17.2547591
9	10		9	-97.18846072
10	2.9		10	-20.21036558
11	8		11	-98.33719484
12	9.8		12	-43.9444348
13	3		13	-22.888179
14	13.3		14	-117.7577744
15	2.1		15	-18.3117249
16	3		16	-25.724916
17	1.7		17	-4.4945654
18	2.3		18	-3.3326793
19	1.5		19	-5.6038335
20	2		20	-7.997208
21	1.7		21	-6.26178
22	1.5		22	-7.4860965
23	1.5		23	-6.907737
24	9	real t	24	-52.876224
25	9	10	25	-52.611219
26	1.1	12	26	-5.4421532
27	1.1	13	27	-8.736211
28	9	15	28	-26.966961
29	9	16	29	-49.114899
30	19.5	31	30	-85.1713005
31	19.5	32	31	-87.0669345
32	12.3	34	32	-150.7025889
33	17.5	35	33	-166.06359
34	3.6	60	34	-25.6042368
35	1.7	70	35	-19.8822412
36	1.4	74	36	-14.9670346
37	2.3	84	37	-27.3328182
38	1.1	92	38	-7.150165
39	2.3	105	39	-36.2027222
40	4.5	106	40	-71.3282265
41	2.5	141	41	-26.0287175
42	1.7	159	42	-12.6260122
43	1.2	164	43	-8.2475784
44	3.5	166	44	-24.2709145
45	2.6	176	45	-24.8979432
46	1.9	177	46	-26.5165995
47	9.3	185	47	-137.5044246
48	2	186	48	-17.02685

49	6		187	49	-39.662388
50	11.3	4.051278114	188	50	-54.253447
51	69	4.73821695	189	51	-1049.205168
52	4.2	5.016199803	195	52	-25.0753608
53	2	5.012383408	203	53	-11.153436
54	17	5.230254271	226	54	-130.973644
55	11	5.387125247	227	55	-80.758953
56	4.2	5.363040344	228	56	-35.4432624
57	2.2	5.366746193	229	57	-16.063091
58	1.5	5.318477393	232	58	-8.247285
59	3.4	5.223524533	234	59	-14.21302
60	2.7	5.200251905	235	60	-6.4113255
61	3.8	5.125506258	239	61	-8.1500614
62	8.8	5.086913492	241	62	-47.8962264
63	3.5	5.086517714	248	63	-10.6940155
64	2.1	4.941618736	261	64	-9.4970715
65	51	5.457981113	264	65	-371.592885
66	1.2	5.586970296	267	66	-4.52955
67	5.8	5.681532748	271	67	-27.444411
68	7.4	5.760447348	286	68	-30.3292774
69	2.8	5.788896306	287	69	0.4046784
70	3.9	5.800935281	307	70	-18.4540005
71	2	5.787329949	314	71	-11.914986
72	1.9	5.762703906	338	72	2.640782133
73	33.6	6.082197177	423	73	-212.9461824
74	1.5	6.072461858	424	74	-17.4339735
75	16.7	6.166837691	433	75	-120.8877493
76	32	6.549656502	439	76	-273.6951699
77	6	6.712397815	440	77	-73.1973772
78	24.4	6.925237139	441	78	-293.1576653
79	4	6.951731687	450	79	-37.53024862
80	8.4	6.848937826	464	80	-80.13217627
81	4	6.687397258	495	81	-37.362082
82	3	6.574890539	511	82	-27.0593685
83	4.5	6.403621861	515	83	-52.7541465
84	4.4	6.387921069	543	84	-21.9240662
85	24.5	6.613085298	559	85	-243.3639487
86	3.7	6.682489719	560	86	-36.60888234
87	8	6.746075582	572	87	-56.85643483
88	8.9	6.830305714	574	88	-40.56594019
89	3.4	6.840592792	575	89	-26.70342316
90	1.5	6.784236059	576	90	-15.45585767
91	3.6	6.757248522	582	91	-40.63326899
92	4.8	6.751511884	584	92	-57.08863537
93	4.2	6.747816734	589	93	-33.95757063
94	8.5	6.764251289	600	94	-79.85217668
95	5.4	6.772139763	620	95	-38.83646071

	Hydrolog	ical	l time series m	odel
tau	tmax-tai	u	g(t-tau)	g(t-tau)/int
	1	50	0.002313336	0.011566679
	2	49	0.002335665	0.011678324
	3	48	0.002358428	0.011792141
	4	47	0.002381639	0.011908194
	5	46	0.002405309	0.012026545
	6	45	0.002429452	0.012147262
	7	44	0.002454083	0.012270413
	8	43	0.002479213	0.012396067
	9	42	0.002504859	0.012524297
	10	41	0.002531035	0.012655176
	11	40	0.002557756	0.01278878
-	12	39	0.002585037	0.012925186
-	13	38	0.002612894	0.013064471
-	14	37	0.002641343	0.013206715
-	15	36	0.002670399	0.013351997
-	16	35	0.002700079	0.013500396
-	17	34	0.002730398	0.013651992
-	18	33	0.002761372	0.013806861
	19	32	0.002793016	0.013965078
2	20	31	0.002825343	0.014126713
2	21	30	0.002858366	0.014291832
2	22	29	0.002892098	0.014460492
2	23	28	0.002926548	0.014632738
	24	27	0.002961721	0.014808604
2	25	26	0.00299762	0.014988101
2	26	25	0.003034244	0.01517122
-	27	24	0.003071583	0.015357917
-	28	23	0.003109622	0.01554811
-	29	22	0.003148332	0.015741661
	30	21	0.003187673	0.015938365
3	31	20	0.003227585	0.016137926
	32	19	0.003267986	0.016339931
	33	18	0.003308763	0.016543814
3	34	17	0.003349761	0.016748805
	35	16	0.003390773	0.016953865
	36	15	0.003431518	0.017157589
3	37	14	0.003471616	0.017358082
3	38	13	0.003510553	0.017552765
	39	12	0.003547623	0.017738114
4	40	11	0.00358185	0.017909251
4	41	10	0.003611867	0.018059336
2	42	9	0.003635721	0.018178604
2	43	8	0.00365056	0.018252802
2	44	7	0.003652106	0.018260528
4	45	6	0.003633691	0.018168457
2	46	5	0.00358444	0.017922199
4	47	4	0.003485426	0.017427129
4	48	3	0.003300609	0.016503047

mu t	2
sig	2
fac	0.199471
sig^2	4
mu-sig^2/2	4

49	2	0.002951125	0.014755626
50	1	0.002215924	0.011079621
51	0	0.2	

Dripwater d18C real t real t (days) Dripwater d ¹⁸ O VSW 1 9.74 7 9.81 13 9.73 19 9.73 25 9.62 57 9.36 63 -9.01 69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
1 -9.74 7 -9.81 13 -9.73 19 -9.73 25 -9.62 57 -9.36 63 -9.01 69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 140 -9.80 149 -9.88 153 -8.49 159 -9.11	IOW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} 13 & -9.73 \\ 19 & -9.73 \\ 25 & -9.62 \\ 57 & -9.36 \\ 63 & -9.01 \\ 69 & -9.13 \\ 69 & -9.13 \\ 75 & -9.45 \\ 81 & -9.56 \\ 99 & -9.40 \\ 105 & -9.20 \\ 111 & -9.47 \\ 117 & -9.07 \\ 123 & -9.16 \\ 128 & -9.00 \\ 134 & -10.36 \\ 140 & -9.80 \\ 146 & -10.20 \\ 149 & -9.88 \\ 153 & -8.49 \\ 159 & -9.11 \\ \end{array} $	
19 -9.73 25 -9.62 57 -9.36 63 -9.01 69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 25 -9.62 57 -9.36 63 -9.01 69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
57 -9.36 63 -9.01 69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
63 -9.01 69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
69 -9.13 75 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
nt 175 -9.45 81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
81 -9.56 99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
99 -9.40 105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
105 -9.20 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 111 -9.47 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 117 -9.07 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 123 -9.16 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 128 -9.00 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 134 -10.36 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 140 -9.80 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
60 146 -10.20 149 -9.88 153 -8.49 159 -9.11	
149 -9.88 153 -8.49 159 -9.11	
153 -8.49 159 -9.11	
159 -9.11	
165 -8.59	
171 -9.00	
10 176 -9.44	
12 182 -9.54	
13 188 -9.45	
15 194 -9.94	
16 204 -10.06	
31 215 -9.41	
32 221 -9.50	
34 227 -9.60	
35 233 -9.64	
60 239 -9.50	
70 245 -9.93	
74 250 -9.19	
84 256 -9.81	
92 261 -9.48	
105 266 -9.80	
106 269 -9.66	
141 274 -9.74	
159 280 -949	
164 286 -9.58	
166 292 -9 5/	
176 292 -9.34 176 298 -0.11	
170 200 -5.11 177 202 -0.66	
105 500 -5.54 106 212 0.22	

	187	318	-9.01
-7.836550395	188	323	-9.15
-8.951806892	189	328	-9.31
-9.229980645	195	331	-9.39
-9.366394637	203	335	-9.94
-9.378252116	226	340	-9.52
-9.358556953	227	345	-9.25
-9.320021217	228	350	-9.14
-9.343995933	229	355	-9.21
-9.40489065	232	361	-9.33
-9.356011205	234	367	-9.39
-9.316166307	235	372	-9.28
-9.182109677	239	377	-9.27
-9.182125793	241	382	-9.39
-9.103453488	248	387	-9.54
-9.049116905	261	393	-9.37
-8.840187649	264	399	-9.18
-8.759655333	267	404	-8.91
-8.695060735	271	409	-8.64
-8.624295476	286	414	-9.32
-8.547554467	287	419	-9.34
-8.496142195	307	424	-8.77
-8.469136708	314	429	-9.33
-8.420010409	338	434	-9.42
-8.277801605	423	439	-9.46
-8.272189852	424	444	-9.22
-8.255356414	433	449	-9.04
-8.252734622	439	454	-9.13
-8.283406624	440	459	-8.77
-8.51403471	441	464	-9.46
-8.611420453	450	469	-9.69
-8.786328372	464	474	-9.42
-8.950611415	495	479	-9.29
-8.890104496	511	493	-9.36
-8.900775254	515	498	-9.61
-8.895207737	543	503	-9.75
-8.927274834	559	508	-9.57
-8.943173153	560	513	-9.36
-8.917378724	572	518	-9.33
-8.857164711	574	545	-9.61
-8.804655988	575	550	-10.23
-8.743735621	576	555	-9.96
-8.747534299	582	560	-9.94
-8.779008131	584	565	-10.23
-8.787912675	589	570	-10.24
-8.810931769	600	578	-9.87
-8.798542481	620	583	-9.70
		588	-9.91
		593	-9.58
		598	-9.56

603	-9.50
614	-9.46
619	-9.77
624	-9.82
629	-9.60
634	-9.83
639	-9.75
644	-10.03
649	-10.01
654	-9.85
659	-9.76
664	-9.37
689	-9.27
694	-8.98
700	-8.86
705	-9.19
710	-8.86
715	-8.92
720	-9.17
725	-8.79

This graph reflects the comparison among dripwater d180 data (site nº 3 at Molinos cave) (red curve)

and modelled dripwater d180 output (blue)