6,834 research outputs found
IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling
Rationale
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are important mechanisms of atrial remodeling, predisposing to the development of atrial fibrillation (AF) in type 2 diabetes mellitus (T2DM). However, the molecular mechanisms underlying these processes especially their interactions have not been fully elucidated.
Objective
To explore the potential role of ER stress–mitochondrial oxidative stress in atrial remodeling and AF induction in diabetes.
Methods and results
Mouse atrial cardiomyocytes (HL-1 cells) and rats with T2DM were used as study models. Significant ER stress was observed in the diabetic rat atria. After treatment with tunicamycin (TM), an ER stress agonist, mass spectrometry (MS) identified several known ER stress and calmodulin proteins, including heat shock protein family A (HSP70) member [HSPA] 5 [GRP78]) and HSPA9 (GRP75, glucose-regulated protein 75). In situ proximity ligation assay indicated that TM led to increased protein expression of the IP3R1–GRP75–VDAC1 (inositol 1,4,5-trisphosphate receptor 1–glucose-regulated protein 75–voltage-dependent anion channel 1) complex in HL-1 cells. Small interfering RNA silencing of GRP75 in HL-1 cells and GRP75 conditional knockout in a mouse model led to impaired calcium transport from the ER to the mitochondria and alleviated mitochondrial oxidative stress and calcium overload. Moreover, GRP75 deficiency attenuated atrial remodeling and AF progression in Myh6-Cre+/Hspa9flox/flox + TM mice.
Conclusions
The IP3R1–GRP75–VDAC1 complex mediates ER stress–mitochondrial oxidative stress and plays an important role in diabetic atrial remodeling
Lower risks of new-onset acute pancreatitis and pancreatic cancer in sodium glucose cotransporter 2 (SGLT2) inhibitors compared to dipeptidyl peptidase-4 (DPP4) inhibitors: A propensity score-matched study with competing risk analysis
Background
Dipeptidyl peptidase-4 inhibitors (DPP4I) may be associated with higher risks of acute pancreatitis and pancreatic cancer. This study compared the risks of acute pancreatitis and pancreatic cancer between sodium glucose cotransporter 2 inhibitors (SGLT2I) and DPP4I users.
Methods
This was a retrospective population-based cohort study of patients with type-2 diabetes mellitus on either SGLT2I or DPP4I between January 1st, 2015, and December 31st 2020 in Hong Kong. The primary outcome was new-onset acute pancreatitis and pancreatic cancer. Propensity score matching (1:1 ratio) using the nearest neighbour search was performed. Univariable and multivariable Cox regressions were applied to identify significant predictors.
Results
This cohort included 31609 Type 2 Diabetes Mellitus patients (median age: 67.4 years old [SD: 12.5]; 53.36% males). 6479 patients (20.49%) used SGLT2I, and 25130 patients (70.50%) used DPP4I. After matching, the rate of acute pancreatitis was significantly lower in SGLT2I users compared to DPP4I users. Multivariable Cox regression showed that SGLT2I use was associated with lower risks of acute pancreatitis (Hazard ratio, HR: 0.11; 95% Confidence interval, CI: 0.02-0.51; P=0.0017) and pancreatic cancer (HR: 0.22; 95% CI: 0.039-0.378; P=0.0003). The results were consistent using competing risk models and different propensity score approaches.
Conclusions
SGLT2I use was associated with lower risks of new-onset acute pancreatitis and pancreatic cancer after propensity score matching and multivariable adjustment, underscoring the need for further evaluation in the randomised controlled trial setting
Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors
The thermal conductivity of polycrystalline semiconductors with type-I
clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr
and/or Eu) exhibit lattice thermal conductivities typical of amorphous
materials. Remarkably, this behavior occurs in spite of the well-defined
crystalline structure and relatively high electron mobility (). The dynamics of dopant ions and their interaction with the
polyhedral cages of the structure are a likely source of the strong phonon
scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let
Heterogeneities in ventricular conduction following treatment with heptanol: A multi-electrode array study in Langendorff-Perfused mouse hearts
Background: Previous studies have associated slowed ventricular conduction with the arrhythmogenesis mediated by the gap junction and sodium channel inhibitor heptanol in mouse hearts. However, they did not study the propagation patterns that might contribute to the arrhythmic substrate. This study used a multi-electrode array mapping technique to further investigate different conduction abnormalities in Langendorff-perfused mouse hearts exposed to 0.1 or 2 mM heptanol. Methods: Recordings were made from the left ventricular epicardium using multi-electrode arrays in spontaneously beating hearts during right ventricular 8 Hz pacing or S1S2 pacing. Results: In spontaneously beating hearts, heptanol at 0.1 and 2 mM significantly reduced the heart rate from 314 ± 25 to 189 ± 24 and 157 ± 7 bpm, respectively (ANOVA, p < 0.05 and p < 0.001). During regular 8 Hz pacing, the mean LATs were increased by 0.1 and 2 mM heptanol from 7.1 ± 2.2 ms to 19.9 ± 5.0 ms (p < 0.05) and 18.4 ± 5.7 ms (p < 0.05). The standard deviation of the mean LATs was increased from 2.5 ± 0.8 ms to 10.3 ± 4.0 ms and 8.0 ± 2.5 ms (p < 0.05), and the median of phase differences was increased from 1.7 ± 1.1 ms to 13.9 ± 7.8 ms and 12.1 ± 5.0 ms by 0.1 and 2 mM heptanol (p < 0.05). P5 took a value of 0.2 ± 0.1 ms and was not significantly altered by heptanol at 0.1 or 2 mM (1.1 ± 0.9 ms and 0.9 ± 0.5 ms, p > 0.05). P50 was increased from 7.3 ± 2.7 ms to 24.0 ± 12.0 ms by 0.1 mM heptanol and then to 22.5 ± 7.5 ms by 2 mM heptanol (p < 0.05). P95 was increased from 1.7 ± 1.1 ms to 13.9 ± 7.8 ms by 0.1 mM heptanol and to 12.1 ± 5.0 ms by 2 mM heptanol (p < 0.05). These changes led to increases in the absolute inhomogeneity in conduction (P5–95) from 7.1 ± 2.6 ms to 31.4 ± 11.3 ms, 2 mM: 21.6 ± 7.2 ms, respectively (p < 0.05). The inhomogeneity index (P5–95/P50) was significantly reduced from 3.7 ± 1.2 to 3.1 ± 0.8 by 0.1 mM and then to 3.3 ± 0.9 by 2 mM heptanol (p < 0.05). Conclusion: Increased activation latencies, reduced CVs, and the increased inhomogeneity index of conduction were associated with both spontaneous and induced ventricular arrhythmias
Anti-arrhythmic effects of hypercalcemia in hyperkalemic, Langendorff-perfused mouse hearts
published_or_final_versio
Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology
© The Author(s), 2019. Technological advancement and personalized health information has led to an increase in people using and responding to wearable technology in the last decade. These changes are often perceived to be beneficial, providing greater information and insights about health for users, organizations and healthcare and government. However, to date, understanding the antecedents of its adoption is limited. Seeking to address this gap, this cross-sectional study examined what factors influence users’ adoption intention of healthcare wearable technology. We used self-administrated online survey to explore adoption intentions of healthcare wearable devices in 171 adults residing in Hong Kong. We analyzed the data by Partial least squares – structural equation modelling (PLS-SEM). The results reveal that perceived convenience and perceived irreplaceability are key predictors of perceived useful ness, which in turn strengthens users’ adoption intention. Additionally, the results also reveal that health belief is one of the key predictors of adoption intention. This paper contributes to the extant literature by providing understanding of how to strengthen users’ intention to adopt healthcare wearable technology. This includes the strengthening of perceived convenience and perceived irreplaceability to enhance the perceived usefulness, incorporating the extensive communication in the area of healthcare messages, which is useful in strengthening consumers’ adoption intention in healthcare wearable technology
Budget feasible mechanisms on matroids
Motivated by many practical applications, in this paper we study budget feasible mechanisms where the goal is to procure independent sets from matroids. More specifically, we are given a matroid =(,) where each ground (indivisible) element is a selfish agent. The cost of each element (i.e., for selling the item or performing a service) is only known to the element itself. There is a buyer with a budget having additive valuations over the set of elements E. The goal is to design an incentive compatible (truthful) budget feasible mechanism which procures an independent set of the matroid under the given budget that yields the largest value possible to the buyer. Our result is a deterministic, polynomial-time, individually rational, truthful and budget feasible mechanism with 4-approximation to the optimal independent set. Then, we extend our mechanism to the setting of matroid intersections in which the goal is to procure common independent sets from multiple matroids. We show that, given a polynomial time deterministic blackbox that returns -approximation solutions to the matroid intersection problem, there exists a deterministic, polynomial time, individually rational, truthful and budget feasible mechanism with (3+1) -approximation to the optimal common independent set
Plasma Physics
Contains reports on two research projects.United States Atomic Energy Commission (Contract AT(30-1)-1842
- …