562 research outputs found

    Lyman-alpha Damping Wing Constraints on Inhomogeneous Reionization

    Full text link
    One well-known way to constrain the hydrogen neutral fraction, x_H, of the high-redshift intergalactic medium (IGM) is through the shape of the red damping wing of the Lya absorption line. We examine this method's effectiveness in light of recent models showing that the IGM neutral fraction is highly inhomogeneous on large scales during reionization. Using both analytic models and "semi-numeric" simulations, we show that the "picket-fence" absorption typical in reionization models introduces both scatter and a systematic bias to the measurement of x_H. In particular, we show that simple fits to the damping wing tend to overestimate the true neutral fraction in a partially ionized universe, with a fractional error of ~ 30% near the middle of reionization. This bias is generic to any inhomogeneous model. However, the bias is reduced and can even underestimate x_H if the observational sample only probes a subset of the entire halo population, such as quasars with large HII regions. We also find that the damping wing absorption profile is generally steeper than one would naively expect in a homogeneously ionized universe. The profile steepens and the sightline-to-sightline scatter increases as reionization progresses. Of course, the bias and scatter also depend on x_H and so can, at least in principle, be used to constrain it. Damping wing constraints must therefore be interpreted by comparison to theoretical models of inhomogeneous reionization.Comment: 11 pages, 10 figures; submitted to MNRA

    TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays

    Full text link
    Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \sim 10^{56} (\Delta \Omega / 4 \pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as \gamma \gtilde 500. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.Comment: Final version to appear in ApJ Lett. Emphasizing that the extremely large energy required in this model is not theoretically impossible if GRB emission is strongly beamed. References update

    Lyman Alpha Emitters in the Hierarchically Clustering Galaxy Formation

    Full text link
    We present a new theoretical model for the luminosity functions (LFs) of Lyman alpha (Lya) emitting galaxies in the framework of hierarchical galaxy formation. We extend a semi-analytic model of galaxy formation that reproduces a number of observations for local and high-z galaxies, without changing the original model parameters but introducing a physically-motivated modelling to describe the escape fraction of Lya photons from host galaxies (f_esc). Though a previous study using a hierarchical clustering model simply assumed a constant and universal value of f_esc, we incorporate two new effects on f_esc: extinction by interstellar dust and galaxy-scale outflow induced as a star formation feedback. It is found that the new model nicely reproduces all the observed Lya LFs of the Lya emitters (LAEs) at different redshifts in z ~ 3-6. Especially, the rather surprisingly small evolution of the observed LAE Lya LFs compared with the dark halo mass function is naturally reproduced. Our model predicts that galaxies with strong outflows and f_esc ~ 1 are dominant in the observed LFs. This is also consistent with available observations, while the simple universal f_esc model requires f_esc << 1 not to overproduce the brightest LAEs. On the other hand, we found that our model significantly overpredicts LAEs at z > 6, and absorption of Lya photons by neutral hydrogen in intergalactic medium (IGM) is a reasonable interpretation for the discrepancy. This indicates that the IGM neutral fraction x_HI rapidly evolves from x_HI << 1 at z < 6 to a value of order unity at z ~ 6-7, which is broadly consistent with other observational constraints on the reionization history.Comment: 14 pages, 7 figures, 1 table; accepted to ApJ; the html abstract is replaced to match the accepted version, the .ps and .pdf files are strictly identical between the 2nd and the 3rd version

    Detecting the Rise and Fall of 21 cm Fluctuations with the Murchison Widefield Array

    Full text link
    We forecast the sensitivity with which the Murchison Widefield Array (MWA) can measure the 21 cm power spectrum of cosmic hydrogen, using radiative transfer simulations to model reionization and the 21 cm signal. The MWA is sensitive to roughly a decade in scale (wavenumbers of k ~ 0.1 - 1 h Mpc^{-1}), with foreground contamination precluding measurements on larger scales, and thermal detector noise limiting the small scale sensitivity. This amounts primarily to constraints on two numbers: the amplitude and slope of the 21 cm power spectrum on the scales probed. We find, however, that the redshift evolution in these quantities can yield important information about reionization. Although the power spectrum differs substantially across plausible models, a generic prediction is that the amplitude of the 21 cm power spectrum on MWA scales peaks near the epoch when the intergalactic medium (IGM) is ~ 50% ionized. Moreover, the slope of the 21 cm power spectrum on MWA scales flattens as the ionization fraction increases and the sizes of the HII regions grow. Considering detection sensitivity, we show that the optimal MWA antenna configuration for power spectrum measurements would pack all 500 antenna tiles as close as possible in a compact core. The MWA is sensitive enough in its optimal configuration to measure redshift evolution in the slope and amplitude of the 21 cm power spectrum. Detecting the characteristic redshift evolution of our models will confirm that observed 21 cm fluctuations originate from the IGM, and not from foregrounds, and provide an indirect constraint on the volume-filling factor of HII regions during reionization. After two years of observations under favorable conditions, the MWA can constrain the filling factor at an epoch when ~ 0.5 to within roughly +/- 0.1 at 2-sigma.Comment: 14 pages, 9 figures, submitted to Ap

    Effects of Neutrino Oscillation on the Supernova Neutrino Spectrum

    Get PDF
    The effects of three-flavor neutrino oscillation on the supernova neutrino spectrum are studied. We calculate the expected event rate and energy spectra, and their time evolution at the Superkamiokande (SK) and the Sudbury Neutrino Observatory (SNO), by using a realistic neutrino burst model based on numerical simulations of supernova explosions. We also employ a realistic density profile based on a presupernova model for the calculation of neutrino conversion probability in supernova envelopes. These realistic models and numerical calculations allow us to quantitatively estimate the effects of neutrino oscillation in a more realistic way than previous studies. We then found that the degeneracy of the solutions of the solar neutrino problem can be broken by the combination of the SK and SNO detections of a future Galactic supernova.Comment: 10 pages, 14 figures, corrected versio

    Does the Number Density of Elliptical Galaxies Change at z<1?

    Full text link
    We have performed a detailed V/Vmax test for a sample of the Canada-France Redshift Survey (CFRS) for the purpose of examining whether the comoving number density of field galaxies changes significantly at redshifts of z<1. Taking into account the luminosity evolution of galaxies which depends on their morphological type through different history of star formation, we obtain \sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were secured by spectroscopy of either absorption or emission lines for the CFRS sample. This indicates that a picture of mild evolution of field galaxies without significant mergers is consistent with the CFRS data. Early-type galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in number at z>0.8 due to the selection bias, thereby causing a fictitious decrease of . We therefore conclude that a reasonable choice of upper bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive evolution for field ellipticals in the CFRS sample, which was rejected by Kauffman, Charlot, & White (1996) without confining the redshift range. However, about 10% of the CFRS sample consists of galaxies having colors much bluer than predicted for irregular galaxies, and their \avmax is significantly larger than 0.5. We discuss this population of extremely blue galaxies in terms of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter

    Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    Full text link
    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within plus or minus five degrees of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7 sigma) is for the event that was predicted to be the most likely to be observed (GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference, Tsukuba, Japa

    The Supernova Relic Neutrino Background

    Full text link
    An upper bound to the supernova relic neutrino background from all past Type II supernovae is obtained using observations of the Universal metal enrichment history. We show that an unambiguous detection of these relic neutrinos by the Super-Kamiokande detector is unlikely. We also analyze the event rate in the Sudbury Neutrino Observatory (where coincident neutrons from anti-nu_e + D --> n + n + e+ might enhance background rejection), and arrive at the same conclusion. If the relic neutrino flux should be observed to exceed our upper bound and if the observations of the metal enrichment history (for z<1) are not in considerable error, then either the Type II supernova rate does not track the metal enrichment history or some mechanism may be responsible for transforming anti-nu_{mu,tau} --> anti-nu_e.Comment: Matches version accepted for publication in Phys. Rev.

    Neutrinos from supernovae: experimental status and perspectives

    Get PDF
    I discuss the state of the art in the search for neutrinos from galactic stellar collapses and the future perspectives of this field. The implications for the neutrino physics of a high statistics supernova neutrino burst detection by the network of detectors operating around the world are also reviewed.Comment: 19 pages, 12 figures. Extended version of talk given at IInd International Workshop on Matter, Anti-Matter and Dark Matter, Trento (Italy), 29-30 October 2001. A reduced version will appear in Int. J. of Mod. Phys.
    • …
    corecore