783 research outputs found

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    High-power gyrotrons for electron cyclotron heating and current drive

    Get PDF
    In many tokamak and stellarator experiments around the globe that are investigating energy production via controlled thermonuclear fusion, electron cyclotron heating and current drive (ECH&CD) are used for plasma start-up, heating, non-inductive current drive and MHD stability control. ECH will be the first auxiliary heating method used on ITER. Megawatt-class, continuous wave (CW) gyrotrons are employed as high-power millimeter (mm)-wave sources. The present review reports on the worldwide state-of-the-art of high-power gyrotrons. Their successful development during the past years changed ECH from a minor to a major heating method. After a general introduction of the various functions of ECH&CD in fusion physics, especially for ITER, Section 2 will explain the fast-wave gyrotron interaction principle. Section 3 discusses innovations on the components of modern long-pulse fusion gyrotrons (magnetron injection electron gun (MIG), beam tunnel, cavity, quasi-optical output coupler, synthetic diamond output window, single-stage depressed collector) and auxiliary components (superconducting magnets, gyrotron diagnostics, high-power calorimetric dummy loads). Section 4 deals with present megawatt-class gyrotrons for ITER, W7-X, LHD, EAST, KSTAR and JT-60SA, and also includes tubes for moderate pulse length machines as, ASDEX-U, DIII-D, HL-2A, TCV, QUEST and GAMMA-10. In Section 5 the development of future advanced fusion gyrotrons is discussed. These are tubes with higher frequencies for DEMO, multi-frequency (multi-purpose) gyrotrons, stepwise frequency tunable tubes for plasma stabilization, injection-locked and coaxial-cavity multi-megawatt gyrotrons, as well as sub-THz gyrotrons for collective Thomson scattering (CTS). Efficiency enhancement via multi-stage depressed collectors, fast oscillation recovery methods and reliability, availability, maintainability and inspectability (RAMI) will be discussed at the end of this section

    Recent progress in optimizing phase-correcting mirrors for a multi-frequency gyrotron

    Get PDF

    Weltrekorde in der Gyrotronforschung

    Get PDF
    • 

    corecore