10 research outputs found

    SASICE: Safety and sustainability in civil engineering

    No full text
    The performance of the built environment and the construction sector are of major importance in Europe’s long term goals of sustainable development in a changing climate. At the same time, the quality of life of all European citizens needs to be improved and the safety of the built environment with respect to man-made and natural hazards, such as flooding and earthquakes, needs to be ensured. Education has a central role to play in the transformation of a construction sector required to meet increasing demands with regard to safety and sustainability. In this work, the SASICE project is presented. The aim of this project is to promote the integration of safety and sustainability in civil engineering education. The project is organised in the context of the Lifelong Learning Programme, funded by the European Community. The coordinator organisation is the University of Bologna. Nine partner universities from different countries are involved in this transnational project. The universities participating to the project constitute a network of high level competences in the civil engineering area, with several opportunities to improve lifelong learning adopting different media: joint curricula, teaching modules and professor and student exchanges. As a response to the challenge regarding new educational methods in sustainable engineering, teaching modules are developed in 4 thematic areas: (1) Safety in construction, (2) Risk induced by Natural Hazards Assessment, (3) Sustainability in construction, and (4) Sustainability at the territorial level. The development of the teaching modules is based on an extensive analysis of the need for highly qualified education on Safety and Sustainability involving all relevant stakeholders (European and national authorities, companies, research institutes, professional organizations, and universities).The main target is enabling students to introduce these advanced topics in their study plans and curricula and reach, at the end of their studies, a specific skill and expertise in safety and sustainability in Civil Engineering. With our natural resources fading away and our infrastructure in dire need of repair, new trends and challenges in civil engineering education in the concept of “Sustainable Development” are needed to be adressed.<br/

    ANYCaRE: a role-playing game to investigate crisis decision-making and communication challenges in weather-related hazards

    Get PDF
    This study proposes a role-playing experiment to explore the value of modern impact-based weather forecasts on the decision-making process to (i) issue warnings and manage the official emergency response under uncertainty and (ii) communicate and trigger protective action at different levels of the warning system across Europe. Here, flood or strong-wind game simulations seek to represent the players' realistic uncertainties and dilemmas embedded in the real-time forecasting-warning processes. The game was first tested in two scientific workshops in Finland and France, where European researchers, developers, forecasters and civil protection representatives played the simulations. Two other game sessions were organized afterwards (i) with undergraduate university students in France and (ii) with Finnish stakeholders involved in the management of hazardous weather emergencies. First results indicate that multi-model developments and crowdsourcing tools increase the level of confidence in the decision-making under pressure. We found that the role-playing approach facilitates interdisciplinary cooperation and argumentation on emergency response in a fun and interactive manner. The ANYCaRE experiment was proposed, therefore, as a valuable learning tool to enhance participants' understanding of the complexities and challenges met by various actors in weather-related emergency management.</p

    Objective analysis of envelope curves for peak floods of European and Mediterranean flash floods

    No full text
    Flash floods rank highly among natural disasters in terms of number of affected people and number of fatalities. This paper analyzes the scaling of the highest flash flood peaks at multiple spatial scales for different hydro-climatic regions in Europe and in the Mediterranean.The analysis is based on an integrated, high-resolution dataset of discharges concerning a number of high-intensity flash floods that occurred in these regions from 1991 to 2015. Quantile regression has permitted to define regional envelope curves of unit peak discharge versus drainage basin area, which summarize the current bound to extreme flash floods in a given region. Mean and standard error of the envelope curves’ parameters are objectively derived, permitting to explore the similarities in the slopes of the regional envelope curves. Results indicate that the exponent of the envelope curves shows almost negligible variations among climatic region whereas the multiplier depends on the climatic regions
    corecore