67 research outputs found

    Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    Get PDF
    The β2–α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2–α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2–α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region

    Modeling Routes of Chronic Wasting Disease Transmission: Environmental Prion Persistence Promotes Deer Population Decline and Extinction

    Get PDF
    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress

    Highly Efficient Amplification of Chronic Wasting Disease Agent by Protein Misfolding Cyclic Amplification with Beads (PMCAb)

    Get PDF
    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility

    Prion Shedding from Olfactory Neurons into Nasal Secretions

    Get PDF
    This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrPSc, was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrPSc co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 103.9 median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrPSc amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants

    A new pathway of glucocorticoid action for asthma treatment through the regulation of PTEN expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>"Phosphatase and tensin homolog deleted on chromosome 10" (PTEN) is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation.</p> <p>Methods</p> <p>OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation <it>in vitro</it>. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone.</p> <p>Results</p> <p>PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT) by anacardic acid attenuated dexamethasone-induced PTEN expression.</p> <p>Conclusions</p> <p>Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The <it>in vitro </it>studies also suggest that the PTEN pathway may be involved in human asthma.</p

    Reduced Serotonin Reuptake Transporter (SERT) Function Causes Insulin Resistance and Hepatic Steatosis Independent of Food Intake

    Get PDF
    Serotonin reuptake transporter (SERT) is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs), that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes

    Distribution of misfolded prion protein seeding activity alone does not predict regions of neurodegeneration

    Get PDF
    Protein misfolding is common across many neurodegenerative diseases, with misfolded proteins acting as seeds for "prion-like" conversion of normally folded protein to abnormal conformations. A central hypothesis is that misfolded protein accumulation, spread and distribution is restricted to specific neuronal populations of the central nervous system and thus predict regions of neurodegeneration. We examined this hypothesis using a highly sensitive assay system for detection of misfolded protein seeds in a murine model of prion disease. Misfolded prion protein seeds were observed widespread throughout the brain accumulating in all brain regions examined irrespective of neurodegeneration. Importantly neither time of exposure nor amount of misfolded protein seeds present determined regions of neurodegeneration. We further demonstrate two distinct microglia responses in prion infected brains, a 11 novel homeostatic response in all regions and an innate immune response restricted to sites of 12 neurodegeneration. Therefore accumulation of misfolded prion protein alone does not define targeting 13 of neurodegeneration which instead results only when misfolded prion protein accompanies a specific 14 innate immune response

    Experimental Oral Transmission of Chronic Wasting Disease to Reindeer (Rangifer tarandus tarandus)

    Get PDF
    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, remains prevalent in North American elk, white-tailed deer and mule deer. A natural case of CWD in reindeer (Rangifer tarandus tarandus) has not been reported despite potential habitat overlap with CWD-infected deer or elk herds. This study investigates the experimental transmission of CWD from elk or white-tailed deer to reindeer by the oral route of inoculation. Ante-mortem testing of the three reindeer exposed to CWD from white-tailed deer identified the accumulation of pathological PrP (PrPCWD) in the recto-anal mucosa associated lymphoid tissue (RAMALT) of two reindeer at 13.4 months post-inoculation. Terminal CWD occurred in the two RAMALT-positive reindeer at 18.5 and 20 months post-inoculation while one other reindeer in the white-tailed deer CWD inoculum group and none of the 3 reindeer exposed to elk CWD developed disease. Tissue distribution analysis of PrPCWD in CWD-affected reindeer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, the gastrointestinal tract, neuroendocrine tissues and cardiac muscle. Analysis of prion protein gene (PRNP) sequences in the 6 reindeer identified polymorphisms at residues 2 (V/M), 129 (G/S), 138 (S/N) and 169 (V/M). These findings demonstrate that (i) a sub-population of reindeer are susceptible to CWD by oral inoculation implicating the potential for transmission to other Rangifer species, and (ii) certain reindeer PRNP polymorphisms may be protective against CWD infection

    Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice

    Get PDF
    A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated

    Activation of Akt by the Bacterial Inositol Phosphatase, SopB, is Wortmannin Insensitive

    Get PDF
    Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway
    corecore