179 research outputs found

    Evaluating the New Zealand Individual Transferable Quota Market for Fisheries Management

    Get PDF
    The New Zealand ITQ system is a dynamic institution that has had many refinements since its inception more than 15 years ago. Nonetheless, the basic tenets of the system - setting a total allowable catch and leaving the market to determine the most profitable allocation of fishing effort - have remained intact. This paper assesses the New Zealand system to identify areas of success and/or possible improvement or expansion within it. The reasons for doing so are to highlight beneficial features and to identify features of the New Zealand ITQ system that are relevant to other potential tradable permit markets. Beneficial features include simple standardized rules for quota definition and trading across species and areas; very few restrictions on quota trading and holding; relative stability in the rules over time; and low levels of government involvement in the trading process. We find evidence that supports the assertion that fishers behave in a reasonably rational fashion and that the markets are relatively efficient. We do not find major changes in participation in these fisheries as a result of the system. We find evidence that suggests that the ITQ system is improving the profitability of fisheries in New Zealand. In general the evidence thus far suggests that the market is operating in a reasonably efficient manner and is providing significant economic gains. These factors suggest that New Zealand would want to have non-economic justifications for any significant changes to the system.

    Integral Field Spectroscopy of the inner kpc of the elliptical galaxy NGC 5044

    Get PDF
    We used Gemini Multi-Object Spectrograph (GMOS) in the Integral Field Unit mode to map the stellar population, emission line flux distributions and gas kinematics in the inner kpc of NGC 5044. From the stellar populations synthesis we found that the continuum emission is dominated by old high metallicity stars (\sim13 Gyr, 2.5Z\odot). Also, its nuclear emission is diluted by a non thermal emission, which we attribute to the presence of a weak active galactic nuclei (AGN). In addition, we report for the first time a broad component (FWHM\sim 3000kms1s^{-1}) in the Hα\alpha emission line in the nuclear region of NGC 5044. By using emission line ratio diagnostic diagrams we found that two dominant ionization processes coexist, while the nuclear region (inner 200 pc) is ionized by a low luminosity AGN, the filamentary structures are consistent with being excited by shocks. The Hα\alpha velocity field shows evidence of a rotating disk, which has a velocity amplitude of \sim240kms1^{-1} at \sim 136 pc from the nucleus. Assuming a Keplerian approach we estimated that the mass inside this radius is 1.9×1091.9\times10^9 MM_{\odot}, which is in agreement with the value obtained through the M-σ\sigma relation, MSMBH=1.8±1.6×109M M_{SMBH}=1.8\pm1.6\times10^{9}M_{\odot}. Modelling the ionized gas velocity field by a rotating disk component plus inflows towards the nucleus along filamentary structures, we obtain a mass inflow rate of \sim0.4 M_\odot. This inflow rate is enough to power the central AGN in NGC 5044.Comment: 16 pages, 12 figures, accepted by MNRA

    Social Capital and Regional Social Infrastructure Investment: Evidence from New Zealand

    Full text link

    Predicting synthetic lethal interactions using conserved patterns in protein interaction networks

    Get PDF
    In response to a need for improved treatments, a number of promising novel targeted cancer therapies are being developed that exploit human synthetic lethal interactions. This is facilitating personalised medicine strategies in cancers where specific tumour suppressors have become inactivated. Mainly due to the constraints of the experimental procedures, relatively few human synthetic lethal interactions have been identified. Here we describe SLant (Synthetic Lethal analysis via Network topology), a computational systems approach to predicting human synthetic lethal interactions that works by identifying and exploiting conserved patterns in protein interaction network topology both within and across species. SLant out-performs previous attempts to classify human SSL interactions and experimental validation of the models predictions suggests it may provide useful guidance for future SSL screenings and ultimately aid targeted cancer therapy development

    Who Pays What for Primary Health Care? Patterns and Determinants of the Fees Paid by Patients in a Mixed Public-Private Financing Model

    Full text link

    Variations in Earnings Growth: Evidence from Earnings Transitions in the NZ Linked Income Survey

    Full text link

    Protein profiling in hepatocellular carcinoma by label-free quantitative proteomics in two west african populations

    Get PDF
    Background: Hepatocellular Carcinoma is the third most common cause of cancer related death worldwide, often diagnosed by measuring serum AFP; a poor performance stand-alone biomarker. With the aim of improving on this, our study focuses on plasma proteins identified by Mass Spectrometry in order to investigate and validate differences seen in the respective proteomes of controls and subjects with LC and HCC. Methods: Mass Spectrometry analysis using liquid chromatography electro spray ionization quadrupole time-of-flight was conducted on 339 subjects using a pooled expression profiling approach. ELISA assays were performed on four significantly differentially expressed proteins to validate their expression profiles in subjects from the Gambia and a pilot group from Nigeria. Results from this were collated for statistical multiplexing using logistic regression analysis. Results: Twenty-six proteins were identified as differentially expressed between the three subject groups. Direct measurements of four; hemopexin, alpha-1-antitrypsin, apolipoprotein A1 and complement component 3 confirmed their change in abundance in LC and HCC versus control patients. These trends were independently replicated in the pilot validation subjects from Nigeria. The statistical multiplexing of these proteins demonstrated performance comparable to or greater than ALT in identifying liver cirrhosis or carcinogenesis. This exercise also proposed preliminary cut offs with achievable sensitivity, specificity and AUC statistics greater than reported AFP averages. Conclusions: The validated changes of expression in these proteins have the potential for development into highperformance tests usable in the diagnosis and or monitoring of HCC and LC patients. The identification of sustained expression trends strengthens the suggestion of these four proteins as worthy candidates for further investigation in the context of liver disease. The statistical combinations also provide a novel inroad of analyses able to propose definitive cutoffs and combinations for evaluation of performance

    Protein profiling in hepatocellular carcinoma by label-free quantitative proteomics in two west african populations.

    Get PDF
    Background Hepatocellular Carcinoma is the third most common cause of cancer related death worldwide, often diagnosed by measuring serum AFP; a poor performance stand-alone biomarker. With the aim of improving on this, our study focuses on plasma proteins identified by Mass Spectrometry in order to investigate and validate differences seen in the respective proteomes of controls and subjects with LC and HCC. Methods Mass Spectrometry analysis using liquid chromatography electro spray ionization quadrupole time-of-flight was conducted on 339 subjects using a pooled expression profiling approach. ELISA assays were performed on four significantly differentially expressed proteins to validate their expression profiles in subjects from the Gambia and a pilot group from Nigeria. Results from this were collated for statistical multiplexing using logistic regression analysis. Results Twenty-six proteins were identified as differentially expressed between the three subject groups. Direct measurements of four; hemopexin, alpha-1-antitrypsin, apolipoprotein A1 and complement component 3 confirmed their change in abundance in LC and HCC versus control patients. These trends were independently replicated in the pilot validation subjects from Nigeria. The statistical multiplexing of these proteins demonstrated performance comparable to or greater than ALT in identifying liver cirrhosis or carcinogenesis. This exercise also proposed preliminary cut offs with achievable sensitivity, specificity and AUC statistics greater than reported AFP averages. Conclusions The validated changes of expression in these proteins have the potential for development into high-performance tests usable in the diagnosis and or monitoring of HCC and LC patients. The identification of sustained expression trends strengthens the suggestion of these four proteins as worthy candidates for further investigation in the context of liver disease. The statistical combinations also provide a novel inroad of analyses able to propose definitive cut-offs and combinations for evaluation of performance
    corecore