1,180 research outputs found

    Gell-Mann - Low Function in QED for the arbitrary coupling constant

    Full text link
    The Gell-Mann -- Low function \beta(g) in QED (g is the fine structure constant) is reconstructed. At large g, it behaves as \beta_\infty g^\alpha with \alpha\approx 1, \beta_\infty\approx 1.Comment: 5 pages, PD

    Renormalization Group Functions for Two-Dimensional Phase Transitions: To the Problem of Singular Contributions

    Full text link
    According to the available publications, the field theoretical renormalization group (RG) approach in the two-dimensional case gives the critical exponents that differ from the known exact values. This fact was attempted to explain by the existence of nonanalytic contributions in the RG functions. The situation is analysed in this work using a new algorithm for summing divergent series that makes it possible to analyse dependence of the results for the critical exponents on the expansion coefficients for RG functions. It has been shown that the exact values of all the exponents can be obtained with a reasonable form of the coefficient functions. These functions have small nonmonotonities or inflections, which are poorly reproduced in natural interpolations. It is not necessary to assume the existence of singular contributions in RG functions.Comment: PDF, 11 page

    Renormalons and Analytic Properties of the \beta function

    Full text link
    The presence or absense of renormalon singularities in the Borel plane is shown to be determined by the analytic properties of the Gell-Mann - Low function \beta(g) and some other functions. A constructive criterion for the absense of singularities consists in the proper behavior of the \beta function and its Borel image B(z) at infinity, \beta(g)\sim g^\alpha and B(z)\sim z^\alpha with \alpha\le 1. This criterion is probably fulfilled for the \phi^4 theory, QED and QCD, but is violated in the O(n)-symmetric sigma model with n\to\infty.Comment: 6 pages, PD

    Quantum Electrodynamics at Extremely Small Distances

    Full text link
    The asymptotics of the Gell-Mann - Low function in QED can be determined exactly, \beta(g)= g at g\to\infty, where g=e^2 is the running fine structure constant. It solves the problem of pure QED at small distances L and gives the behavior g\sim L^{-2}.Comment: Latex, 6 pages, 1 figure include

    H-theorem in quantum physics

    Full text link
    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.Comment: 8 pages, 4 figure

    Finite-size scaling from self-consistent theory of localization

    Full text link
    Accepting validity of self-consistent theory of localization by Vollhardt and Woelfle, we derive the finite-size scaling procedure used for studies of the critical behavior in d-dimensional case and based on the use of auxiliary quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good agreement with numerical results: it signifies the absence of essential contradictions with the Vollhardt and Woelfle theory on the level of raw data. The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of the correlation length, are explained by the fact that dependence L+L_0 with L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu} with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived; it demonstrates incorrectness of the conventional treatment of data for d=4 and d=5, but establishes the constructive procedure for such a treatment. Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with high precision data by Kramer et a

    Triviality problem and the high-temperature expansions of the higher susceptibilities for the Ising and the scalar field models on four-, five- and six-dimensional lattices

    Get PDF
    High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude-ratios which determine the critical equation of state. We have obtained a substantial extension through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s >= 1/2 and for the lattice scalar field theory with quartic self-interaction, on the simple-cubic and the body-centered-cubic lattices in four, five and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions, yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction ("triviality") property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.Comment: 17 pages, 10 figure

    Enumeration of many-body skeleton diagrams

    Full text link
    The many-body dynamics of interacting electrons in condensed matter and quantum chemistry is often studied at the quasiparticle level, where the perturbative diagrammatic series is partially resummed. Based on Hedin's equations for self-energy, polarization, propagator, effective potential, and vertex function in zero dimension of space-time, dressed Feynman (skeleton) diagrams are enumerated. Such diagram counts provide useful basic checks for extensions of the theory for future realistic simulations.Comment: 5 pages including 4 figure
    • …
    corecore