9,988 research outputs found

    Nuclear Equation of State and Internal Structure of Magnetars

    Get PDF
    Recently, neutron stars with very strong surface magnetic fields have been suggested as the site for the origin of observed soft gamma repeaters (SGRs). We investigate the influence of a strong magnetic field on the properties and internal structure of such strongly magnetized neutron stars (magnetars). The presence of a sufficiently strong magnetic field changes the ratio of protons to neutrons as well as the neutron appearance density. We also study the pion production and pion condensation in a strong magnetic field. We discuss the pion condensation in the interior of magnetars as a possible source of SGRs.Comment: 5 pages with 3 figures, To appear in the Proceedings of the 5th Huntsville Gamma Ray Burst Symposium, Huntsville, Alabama, USA, Oct. 18-22, 199

    Intermediate-mass black holes in dwarf galaxies out to redshift ∌\sim 2.4 in the Chandra COSMOS Legacy Survey

    Full text link
    We present a sample of 40 AGN in dwarf galaxies at redshifts zâ‰Čz \lesssim 2.4. The galaxies are drawn from the \textit{Chandra} COSMOS-Legacy survey as having stellar masses 107≀M∗≀3×10910^{7}\leq M_{*}\leq3 \times 10^{9} M⊙_{\odot}. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5−10keV∌1039−1044L_\mathrm{0.5-10 keV} \sim10^{39} - 10^{44} erg s−1^{-1}. With 12 sources at z>0.5z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid\_1192, at z=2.39z = 2.39 and with L0.5−10keV∌1044L_\mathrm{0.5-10 keV} \sim 10^{44} erg s−1^{-1}. One of the dwarf galaxies has M∗=6.6×107M_\mathrm{*} = 6.6 \times 10^{7} M⊙_{\odot} and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ∌104−105\sim 10^{4} - 10^{5} M⊙_{\odot} and typical Eddington ratios >1%> 1\%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to zz = 0.7. We find that the AGN fraction for 109<M∗≀3×10910^{9}< M_{*}\leq3 \times 10^{9} M⊙_{\odot} and LX∌1041−1042L_\mathrm{X} \sim 10^{41}-10^{42} erg s−1^{-1} is ∌\sim0.4\% for z≀z \leq 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    A quasi-time-dependent radiative transfer model of OH104.9+2.4

    Full text link
    We investigate the pulsation-phase dependent properties of the circumstellar dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous modeling of the spectral energy distribution (SED) and near-infrared (NIR) visibilities (Riechers et al. 2004) has now been extended by means of a more detailed analysis of the pulsation-phase dependence of the model parameters of OH104.9+2.4. In order to investigate the temporal variation in the spatial structure of the CDS, additional NIR speckle interferometric observations in the K' band were carried out with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the diffraction-limited resolution of 74 mas was attained. Several key parameters of our previous best-fitting model had to be adjusted in order to be consistent with the newly extended amount of observational data. It was found that a simple rescaling of the bolometric flux F_bol is not sufficient to take the variability of the source into account, as the change in optical depth over a full pulsation cycle is rather high. On the other hand, the impact of a change in effective temperature T_eff on SED and visibility is rather small. However, observations, as well as models for other AGB stars, show the necessity of including a variation of T_eff with pulsation phase in the radiative transfer models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in Astronomy and Astrophysics. (v1: accepted version; v2: published version, minor grammatical changes

    Approximating ReLU on a Reduced Ring for Efficient MPC-based Private Inference

    Full text link
    Secure multi-party computation (MPC) allows users to offload machine learning inference on untrusted servers without having to share their privacy-sensitive data. Despite their strong security properties, MPC-based private inference has not been widely adopted in the real world due to their high communication overhead. When evaluating ReLU layers, MPC protocols incur a significant amount of communication between the parties, making the end-to-end execution time multiple orders slower than its non-private counterpart. This paper presents HummingBird, an MPC framework that reduces the ReLU communication overhead significantly by using only a subset of the bits to evaluate ReLU on a smaller ring. Based on theoretical analyses, HummingBird identifies bits in the secret share that are not crucial for accuracy and excludes them during ReLU evaluation to reduce communication. With its efficient search engine, HummingBird discards 87--91% of the bits during ReLU and still maintains high accuracy. On a real MPC setup involving multiple servers, HummingBird achieves on average 2.03--2.67x end-to-end speedup without introducing any errors, and up to 8.64x average speedup when some amount of accuracy degradation can be tolerated, due to its up to 8.76x communication reduction

    Systems Pharmacological Approach of Pulsatillae Radix

    Get PDF
    In East Asian traditional medicine, Pulsatillae Radix (PR) is widely used to treat amoebic dysentery and renowned for its anti-inflammatory effects. This study aimed to confirm evidence regarding the potential therapeutic effect of PR on Crohn’s disease using a system network level based in silico approach. Study results showed that the compounds in PR are highly connected to Crohn’s disease related pathways, biological processes, and organs, and these findings were confirmed by compound-target network, target-pathway network, and gene ontology analysis. Most compounds in PR have been reported to possess anti-inflammatory, anticancer, and antioxidant effects, and we found that these compounds interact with multiple targets in a synergetic way. Furthermore, the mRNA expressions of genes targeted by PR are elevated significantly in immunity-related organ tissues, small intestine, and colon. Our results suggest that the anti-inflammatory and repair and immune system enhancing effects of PR might have therapeutic impact on Crohn’s disease

    Mass-Radius Relation for Magnetic White Dwarfs

    Get PDF
    Recently, several white dwarfs with very strong surface magnetic fields have been observed. In this paper we explore the possibility that such stars could have sufficiently strong internal fields to alter their structure. We obtain a revised white dwarf mass-radius relation in the presence of strong internal magnetic fields. We first derive the equation of state for a fully degenerate ideal electron gas in a magnetic field using an Euler-MacLaurin expansion. We use this to obtain the mass-radius relation for magnetic 4^{4}He, 12^{12}C, and 56^{56}Fe white dwarfs of uniform composition.Comment: 7 pages, 7 figures and 1 table, To appear in Ap
    • 

    corecore