470 research outputs found

    The Impact of Individual Expertise and Public Information on Group Decision-Making

    Get PDF
    In this open-access-book the author concludes that expertise could be the key factor for global and interconnected problems. Experimental results have shown that expertise was a stronger predictor than public information regarding change in behavior and strategy adaption. Identifying non-routine problem-solving experts by efficient online assessments could lead to less volatile system performance, from which all decision-makers could potentially profit

    The Impact of Individual Expertise and Public Information on Group Decision-Making

    Get PDF
    In this open-access-book the author concludes that expertise could be the key factor for global and interconnected problems. Experimental results have shown that expertise was a stronger predictor than public information regarding change in behavior and strategy adaption. Identifying non-routine problem-solving experts by efficient online assessments could lead to less volatile system performance, from which all decision-makers could potentially profit

    Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates

    Full text link
    In many molecular systems one encounters the situation where electronic excitations couple to a quasi-continuum of phonon modes. That continuum may be highly structured e.g. due to some weakly damped high frequency modes. To handle such a situation, an approach combining the non-Markovian quantum state diffusion (NMQSD) description of open quantum systems with an efficient but abstract approximation was recently applied to calculate energy transfer and absorption spectra of molecular aggregates [Roden, Eisfeld, Wolff, Strunz, PRL 103 (2009) 058301]. To explore the validity of the used approximation for such complicated systems, in the present work we compare the calculated (approximative) absorption spectra with exact results. These are obtained from the method of pseudomodes, which we show to be capable of determining the exact spectra for small aggregates and a few pseudomodes. It turns out that in the cases considered, the results of the two approaches mostly agree quite well. The advantages and disadvantages of the two approaches are discussed

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    Fidelity and Purity Decay in Weakly Coupled Composite Systems

    Full text link
    We study the stability of unitary quantum dynamics of composite systems (for example: central system + environment) with respect to weak interaction between the two parts. Unified theoretical formalism is applied to study different physical situations: (i) coherence of a forward evolution as measured by purity of the reduced density matrix, (ii) stability of time evolution with respect to small coupling between subsystems, and (iii) Loschmidt echo measuring dynamical irreversibility. Stability has been measured either by fidelity of pure states of a composite system, or by the so-called reduced fidelity of reduced density matrices within a subsystem. Rigorous inequality among fidelity, reduced-fidelity and purity is proved and a linear response theory is developed expressing these three quantities in terms of time correlation functions of the generator of interaction. The qualitatively different cases of regular (integrable) or mixing (chaotic in the classical limit) dynamics in each of the subsystems are discussed in detail. Theoretical results are demonstrated and confirmed in a numerical example of two coupled kicked tops.Comment: 21 pages, 12 eps figure

    Stochastic Schroedinger Equations with General Complex Gaussian Noises

    Full text link
    Within the framework of stochastic Schroedinger equations, we show that the correspondence between statevector equations and ensemble equations is infinitely many to one, and we discuss the consequences. We also generalize the results of [Phys. Lett. A 224, p. 25 (1996)] to the case of more general complex Gaussian noises and analyze the two important cases of purely real and purely imaginary stochastic processes.Comment: 5 pages, LaTeX. To appear on Phys. Rev.

    Assessment of human immediate response capability related to tsunami threats in Indonesia at a sub-national scale

    Get PDF
    Human immediate response is contextualized into different time compartments reflecting the tsunami early warning chain. Based on the different time compartments the available response time and evacuation time is quantified. The latter incorporates accessibility of safe areas determined by a hazard assessment, as well as environmental and demographic impacts on evacuation speed properties assessed using a Cost Distance Weighting GIS approach. <br><br> Approximately 4.35 million Indonesians live in tsunami endangered areas on the southern coasts of Sumatra, Java and Bali and have between 20 and 150 min to reach a tsunami-safe area. Most endangered areas feature longer estimated-evacuation times and hence the population possesses a weak immediate response capability leaving them more vulnerable to being directly impacted by a tsunami. At a sub-national scale these hotspots were identified and include: the Mentawai islands off the Sumatra coast, various sub-districts on Sumatra and west and east Java. Based on the presented approach a temporal dynamic estimation of casualties and displacements as a function of available response time is obtained for the entire coastal area. As an example, a worst case tsunami scenario for Kuta (Bali) results in casualties of 25 000 with an optimal response time (direct evacuation when receiving a tsunami warning) and 120 000 for minimal response time (no evacuation). The estimated casualties correspond well to observed/reported values and overall model uncertainty is low with a standard error of 5%. <br><br> The results obtained allow for prioritization of intervention measures such as early warning chain, evacuation and contingency planning, awareness and preparedness strategies down to a sub-district level and can be used in tsunami early warning decision support

    Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops

    Get PDF
    We have investigated the mean field dynamics of an overdamped viscoelastic medium driven through quenched disorder. The model introduced incorporates coexistence of pinned and sliding degrees of freedom and can exhibit continuous elastic depinning or first order hysteretic depinning. Numerical simulations indicate mean field instabilities that correspond to macroscopic stick-slip events and lead to premature switching. The model is relevant for the dynamics of driven vortex arrays in superconductors and other extended disordered systems.Comment: 4 pages, 2 figure

    Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion revisited

    Full text link
    Stochastic Schr{\"o}dinger equations for quantum trajectories offer an alternative and sometimes superior approach to the study of open quantum system dynamics. Here we show that recently established convolutionless non-Markovian stochastic Schr{\"o}dinger equations may serve as a powerful tool for the derivation of convolutionless master equations for non-Markovian open quantum systems. The most interesting example is quantum Brownian motion (QBM) of a harmonic oscillator coupled to a heat bath of oscillators, one of the most-employed exactly soluble models of open system dynamics. We show explicitly how to establish the direct connection between the exact convolutionless master equation of QBM and the corresponding convolutionless exact stochastic Schr\"odinger equation.Comment: 18 pages, RevTe

    Oscillator model for dissipative QED in an inhomogeneous dielectric

    Full text link
    The Ullersma model for the damped harmonic oscillator is coupled to the quantised electromagnetic field. All material parameters and interaction strengths are allowed to depend on position. The ensuing Hamiltonian is expressed in terms of canonical fields, and diagonalised by performing a normal-mode expansion. The commutation relations of the diagonalising operators are in agreement with the canonical commutation relations. For the proof we replace all sums of normal modes by complex integrals with the help of the residue theorem. The same technique helps us to explicitly calculate the quantum evolution of all canonical and electromagnetic fields. We identify the dielectric constant and the Green function of the wave equation for the electric field. Both functions are meromorphic in the complex frequency plane. The solution of the extended Ullersma model is in keeping with well-known phenomenological rules for setting up quantum electrodynamics in an absorptive and spatially inhomogeneous dielectric. To establish this fundamental justification, we subject the reservoir of independent harmonic oscillators to a continuum limit. The resonant frequencies of the reservoir are smeared out over the real axis. Consequently, the poles of both the dielectric constant and the Green function unite to form a branch cut. Performing an analytic continuation beyond this branch cut, we find that the long-time behaviour of the quantised electric field is completely determined by the sources of the reservoir. Through a Riemann-Lebesgue argument we demonstrate that the field itself tends to zero, whereas its quantum fluctuations stay alive. We argue that the last feature may have important consequences for application of entanglement and related processes in quantum devices.Comment: 24 pages, 1 figur
    corecore